Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Dec 2023 (v1), last revised 19 Dec 2023 (this version, v2)]
Title:Learning Dense Correspondence for NeRF-Based Face Reenactment
View PDF HTML (experimental)Abstract:Face reenactment is challenging due to the need to establish dense correspondence between various face representations for motion transfer. Recent studies have utilized Neural Radiance Field (NeRF) as fundamental representation, which further enhanced the performance of multi-view face reenactment in photo-realism and 3D consistency. However, establishing dense correspondence between different face NeRFs is non-trivial, because implicit representations lack ground-truth correspondence annotations like mesh-based 3D parametric models (e.g., 3DMM) with index-aligned vertexes. Although aligning 3DMM space with NeRF-based face representations can realize motion control, it is sub-optimal for their limited face-only modeling and low identity fidelity. Therefore, we are inspired to ask: Can we learn the dense correspondence between different NeRF-based face representations without a 3D parametric model prior? To address this challenge, we propose a novel framework, which adopts tri-planes as fundamental NeRF representation and decomposes face tri-planes into three components: canonical tri-planes, identity deformations, and motion. In terms of motion control, our key contribution is proposing a Plane Dictionary (PlaneDict) module, which efficiently maps the motion conditions to a linear weighted addition of learnable orthogonal plane bases. To the best of our knowledge, our framework is the first method that achieves one-shot multi-view face reenactment without a 3D parametric model prior. Extensive experiments demonstrate that we produce better results in fine-grained motion control and identity preservation than previous methods.
Submission history
From: Songlin Yang [view email][v1] Sat, 16 Dec 2023 11:31:34 UTC (1,798 KB)
[v2] Tue, 19 Dec 2023 03:12:59 UTC (1,975 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.