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Abstract

We propose a new sample efficient algorithm to learn the pa-
rameters governing the purchasing behavior of a utility max-
imizing buyer, who responds to prices, in a repeated interac-
tion setting. The key feature of our algorithm is that it can
work with arbitrary price constraints that the seller may im-
pose. This overcomes a major shortcoming of previous ap-
proaches, which use unrealistic prices to learn these param-
eters making them unsuitable in practice. Once the relevant
parameters are learned by our algorithm, in addition to being
useful for decisions such as pricing goods to maximize the
seller’s profit, the models can also be used for other decision
problems such as inventory control and promotion planning.

1 Introduction

Modeling the arrival and response behavior of a buyer
to a collection of items sold by a seller has a rich his-
tory in operations management(

) and machine learning ( ;
), and helps answer
questions such as: what assortment of items should a seller
show a prospective buyer? How should she price them?
Much work in this area can be divided into two categories:
in the first category, learning the purchase models explicitly
is the main goal, and in the second category, maximizing the
revenue or some other function given a behavior model is
the main objective.

In particular, in the latter category, instead of learning
the buyer behavior, one optimizes what is known as regret,
which is the difference between what the seller could have
done in hindsight compared to what they did in a sequence
of interactions with the buyer. Although the regret setting is
appealing, the techniques and the corresponding algorithms
tend to be very specialized (except for perhaps the simplest
cases). In particular, many of the general purpose algorithms
(such as Thompson Sampling and UCB) depend linearly on
the number of actions, which is not-ideal when the action
space is large or infinite (as is the case for us). Specialized
analysis or algorithms address this dependence issue but de-
pend heavily on the structure of the objective. Further, if the
objective changes, either because of business considerations
or as new business logic is introduced, one has to design new
algorithms and start from scratch. Thus, it is still economi-
cal and convenient to decouple the estimation problem from

the decision making problem and explicitly estimate the pa-
rameters of buyer behavior first. This problem is also called
the problem of pure exploration.

There is a recent line of work on learning the behavior of
buyers online ( ; ;

). Compare to these works, our algorithm
does not share a key shortcoming, which is the necessity of
posting unrealistic prices in the process of learning. Note
that, learning buyer behavior in the offline (batch data) set-
ting has also been addressed in recent works. For instance,
in ( ), the authors learn the
parameters of a particular buyer behavior model that con-
siders preference lists. We believe the online setting is rel-
atively more interesting because there is scope for real-time
personalization tailored to each individual buyer compared
to the offline setting.

In this paper we consider a buyer behavior where only the
buyer’s objective is sensitive to prices. This type of sensi-
tivity to prices to prices has been considered in the online
setting ( ) in the context of re-
gret minimizing profit maximization, as well as in the offline
setting ( ). In each inter-
action, the seller prices a collection of items and the buyer
responds by purchasing various quantities of each item that
maximizes her objective/utility. These purchase decisions
may be subject to arbitrary (known) feasibility constraints
on the bundle of items. We call this model the unconstrained
utility maximization model (the word unconstrained is used
to denote that there is no price based budget constraint, see
Section 4). Previously proposed algorithms resort to posting
unrealistic prices to induce the buyer to buy/not-buy certain
items. Our algorithm eliminates this shortcoming by learn-
ing the buyer behavior while being constrained to post prices
from a predefined set of realistic prices, which is provided
as an input. This makes it more practical and readily appli-
cable in real scenarios. We also show that the number of
interactions with the buyer needed by our algorithm is com-
petitive to the previous state of the art methods. Internally, it
exploits the concavity property of the buyer’s objective and
uses projected gradient descent to shrink an uncertainty el-
lipsoid around the true buyer model parameters.

We summarize our technical contributions below:

1. The key feature of our algorithm is that it searches for
prices that induce purchase of specific target bundles, and



creates hyperplanes corresponding to these price vectors
to sequentially split the uncertainty set over the buyer’s
parameters.

2. We also derive a bound on the number of interactions our
algorithm needs for learning the buyer parameters. Re-
ducing the number of interactions is important because
while learning, the algorithm is agnostic to the revenue
generated.

2 Related Work

In the online setting, there is a rich body of work on
pricing for profit maximization ( ;

), Where the est1mat10n
problem is typlcally considered secondary and the estima-
tors of the buyer model are heavily tailored to the subse-
quent objective being optimized for, limiting their univer-
sality and reuse. Although regret minimization is attractive
because of the possibility of achieving dual objectives (say
profit maximization as well as estimation) with the same
number of interactions needed for direct estimation, the cor-
responding algorithms are extremely fragile and sensitive to
the structure of the decision problem The reader is directed
to the following references, viz., ( ;

) for recent results in pric-
ing related regret minimization problems.

One recent work that addresses learning of the uncon-
strained utility maximization model that we study, is that
of ( ). There the authors study a
profit maximization problem of a leader, who is in a Stack-
elberg game, when the follower utility function is unknown
(but has a parametric form similar to our unconstrained util-
ity maximizing model). They make use of bandit concave
optimization and a gradient based method to directly opti-
mize for the prices that control profit. We build on some
of their intermediate results (namely that of learning a price
that induces a specific bundle of items) for our objective of
directly learning the buyer behavior model. Note that their
results are not enough to estimate the model paramters com-
pletely.

To address this, we also buld on the ellipsoid algo-
rithm ( ) to get an accurate estimate of the
model parameters. Use of ellipsoid uncertainty set has also
been previous considered for other online settings. In (

), the authors study the problem
of feature based dynamic pricing using ellipsoidal theory,
where the seller receives a single differentiated item in each
round that is described by a vector of features. The seller’s
goal is to design an algorithm that maximizes profit (min-
imizes regret) when the buyer’s valuations for the different
item features are not known a priori. Their proposed algo-
rithm essentially does a multidimensional search for the best
price to post in each round. Our algorithm can also be seen
as performing a multidimensional search, but for parameters
related to the entire universe of items. Thus, we work with
multiple items in each round in contrast to their single item
setting. While using an ellipsoid to represent uncertainty in

parameter estimation, the cut direction and the hyperplane
placement is straightforward in (

). On the other hand, in our algorithm, we carefully
choose the cut direction as well as position the hyperplane
in order to reduce the uncertainty in the model parameters.
We do this with realistic constraints on the prices, by solving
the dual of a specific optimization problem using projected
gradient descent. Finally, note that while their problem is a
version of the contextual bandit problem for which general
purpose algorithms are already available, our problem is not
a contextual bandit instance.

Another way to approach our problem is via regression
based methods. As mentioned in ( ), such
methods tend to need a higher number of interactions with
the buyer compared to specialized methods like ours. For
instance, in our algorithm we explicitly choose the sequence
of query points (adaptive) as well as design specific hyper-
planes in such a way so that the uncertainty set around the
utility function parameters shrinks the most. These charac-
teristics make our algorithm enjoy stronger query complex-
ity than regression based methods. Note that even regres-
sion methods need a subroutine algorithm that we propose
in Section 4 (which estimates values of arbitrary bundles via
multiple interactions with the buyer).

3 Realistic Prices

Here we define what we mean by realistic prices and mo-
tivate it from a practical point of view. These prices will
constraint the prices that the seller can set while learning the
buyer model (Section 4).

The price p; of an item ¢ is realistic if it lies within the
interval [p{ — d;, p? + 6;], where p? is the median price point
and 24; is the length of the interval (without loss of gen-
erality, we can assume symmetry here). This leads to an
n-orthotope, which is defined as follows:

Definition 1. A set of prices is said to be realistic if it is of
the following form:

P={peR}||IS'p-1")x <1}, (D

where p° € R? is the median price point, A =
[61--8,])T >0, and
1
g —
dn,

is its corresponding diagonal matrix. The length of the real-
istic price interval for each item i € [n] is thus 20;.

Thus, we consider prices that belong to a transformed
|||lcc norm-ball (scaled by matrix S and translated by p°).
While price covariation constraints are not captured in this
definition, suitable affine transformations and other convex
bodies such as ellipsoids can also be be used to restrict
prices. To obtain closed formulation for algorithmic con-
vergence we assume the set P is enclosed in a euclidean ball
of radius R.

The practical motivation for such a constraint to be im-
posed while learning the buyer behavior model is straight-
forward: prices of items in many commercial settings are



only allowed to vary between realistic lower and upper
bounds (for instance, setting price as 0 or oo is impractical).
This is because of business constraints and because of prior
knowledge on the market value of goods and items. More
involved constraints include bundle prices (where prices are
tied to each other) and promotion/discount prices that are
also specified by business rules. Further, all such constraints
can vary arbitrarily over time. We do not make any strong
assumptions on their description and only consider them as
exogenous inputs for our algorithm.

Restricting prices has a profound impact on algorithms
that have been previously proposed in the literature. For in-
stance, Algorithm 2 in ( ) (that addresses
learning a slightly different variant of the buyer model con-
sidered here) breaks down when one restricts the prices to P.
As we show in the subsequent section, our algorithm is able
to make progress and outputs an uncertainty set that contains
the true parameter of the buyer model even when prices are
restricted.

4 Buyer Model

We represent a bundle of goods z € C' C [0, 1]™ (where C
is the feasible set) by a vector representing what fraction of
each of the n goods is purchased. The prices are represented
by a vector p = (p1,- -+ ,pn) € R™. The price of a bundle =
is simply p’z = Z?:l pi - ©;. When the buyer is provided
with a price vector p, she buys the fie-breaking utility max-
imizing bundle, z*(p), which is the optimal solution of the
following optimization program:

x*(p) = argmaxzec U(x) —|—% (Z\/@) —pTz.
i=1
@

Ideally, a utility maximizing buyer would maximize
U(z) — pTz, where U : [0,1]" — R specifies their util-
ity for each possible bundle. Since this could potentially
lead to multiple optimal bundles (e.g., when U is not strictly
concave), we add a tie-breaking perturbation to the original
utility function to introduce consistency in the buyer’s deci-
sion making process. That is, we model the buyer’s effective

utility function as U’(z) = U(x) + % <Z\/E , where
i=1

is a positive constant. There is nothing special about the
choice of the tie breaking function, and many other choices
can also be used to make the solution unique (for instance,
we can use the Cobb-Douglas function as well). The so-
lution z*(p) is called the induced bundle at prices p. The
seller’s goal is to learn the parameters of the function U(.)
by observing the bundles bought in a sequence of interac-
tions, where the seller chooses realistic prices of items in
each interaction.

Assumptions:

We assume that the seller knows the set C' of feasible bun-
dles. This is a mild condition, and can be mined from histor-
ical purchase data. We also assume that the seller does not
know the exact tie breaking parameter j that the buyer uses,
but knows an upper and lower bound on it i.e., i € [p1, p2].

We assume tie-breaking to be the only effect of such a func-
tion and that its functional form is known beforehand.

To ensure computational tractability of the buyer’s prob-
lem in Equation (2), we make some generic assumptions
about the buyer’s utility function. Namely, we assume U (.)
is concave on the feasible set C'. Also, let U(z) for each z €

C be non-negative and non-decreasing. Since the tie break-
n

ing perturbation ;% <Z @) is also non-negative and non-
i=1
decreasing, so U’(x) non-negative and non-decreasing. The
set C' C dom U’ is assumed to be non-empty, compact and
convex and Vz € C, ||z||1 < 71 and ||z||2 < 72 (here ||a|q
refer to the £,-norm of vector a).

Further, since U(z) is concave on C, U’(x) = U(z) +

n
ﬁ (ZJJ%) , 18 i—strongly concave (see Proposition 14 in
i=1

Appendix B) on the set C' with respect to ||-||]2 norm. In
other words, the buyer’s problem defined in Equation (2) is
a maximization of a strongly concave function over a con-
vex set C. Hence x*(p) exists for every p € R™ and is
unique (follows from strong concavity) as discussed earlier.
We also assume that the utility function of the buyer, U(z),
is (Ayai1, 8)-Holder continuous (defined in Appendix B) with
respect to the ||-|]|2 norm — for all 2, 2" € C. Thus we have,
|U(z) = U(z")| < Apar - ||z — I/Hg Note that this assump-
tion of Holder-continuity on the utilities is a mild one and is
satisfied by a wide range of economically meaningful utili-
ties like Constant Elasticity of Substitution (CES) and Cobb-
Douglas utilities.

We restrict the scope of our model to utility functions with
linear coefficients and known nonlinearities (these are with
respect to x). This includes many concave utility functions
(concave in the bundle) including the CES utility function
(this is a function of the form U(z) = (3.1, a;x?)”? that
has linear coefficients when parameter 5 = 1 and p < 1),
the logarithm of the Cobb-Douglas function (logU(z) =
>, a;log x;), and any other function that is approximable
by a positive polynomial of bundle x. Thus, utilities such as
Separable Piecewise-Linear Concave (SPLC), CES, Cobb-
Douglas or Leontief functions can also be learned in our
setting (although their representation has to be transformed
so that the function is linear in the parameters). Later on,
without loss of generality, we will assume U(z) = a’z =
Sor g ai-x, witha € R},

Note that without an interesting feasible set C' of bun-
dles, the learning problem in our setting decomposes into
n scalar learning problems that can be solved using binary
search. On the other hand, when we have a non-trivial C or
a coupling across items through the function U, then binary
search is no longer applicable.

The Learning Algorithm

Overview: The algorithm that we propose for learning the
unknown parameter vector ¢* is based on maintaining un-
certainty ellipsoids around a* and successively shrinking
their volume by constructing specific separating hyperplanes
(based on observed purchases). At each round ¢, we start



with an uncertainty ellipsoid F; and shrink it to get Eyy.
In particular, based on the interaction between the buyer
and the seller in the current round, we cut E, with a hy-
perplane into two regions. And then we update E;,; as the
Lowner-John ellipsoid of one of these regions. Appendix A
describes the details of some calculus involving ellipsoids,
which we use below.

The main technical part of our algorithm is that it works
by seeking a desired purchase vector in each round. The pur-
chase vector is then used to deduce a hyperplane that cuts the
uncertainty set. Now, this purchase vector cannot be directly
accessed as we can only control prices to induce purchase.
Below, we show how to use gradient descent and duality to
find prices that induce desired bundles.

Along with the price that induces desired bundles, we are
able to get the value of these bundles. We compare these
values with the minimum and maximum values that are
possible given our current uncertainty set over parameter
vector a* and define appropriate hyperplanes to split the
uncertainty sets, thus shrinking them.

Finding a price that induces a specific bundle: Consider
the following convex program:

maxxec U'(x)
s.t x; <Z; foreveryitemj € [n],

3

where & € C'is a specific bundle. Since the utility function
U’(x) is non-decreasing and 1/pu-strongly concave, we can
see that Z is the unique optimal solution of the problem in
Equation (3). The partial Lagrangian of this formulation (3)
is defined as: £(x,p) = U’(z) —p’z+p’ 7, where p € R7
is the dual variable. We define the Lagrange dual function
g:R" - Rtobe g(p) = ?eaéiﬁ(x,p) = max U'(z) —

pT2+pTZ. Now the dual of the convex program in Equation
(3) can be defined as:

min  g(p)
st peR}. )

Our algorithm (described later) needs to choose a spe-
cific bundle 7 and learn its value U’(Z). Since we can only
control prices, we show how to learn the value U’(Z) by
working with the dual problem. In other words, to compute
U’(Z), which we otherwise could not have since U’ (.) is un-
known, we define the problem in (3) such that its optimal
solution is 7 itself. We can compute the minimizer p of its
dual in (4) because we can control prices. And, by strong
duality, we will get g(p) = U’(Z) = OPT.

Now we focus on the problem of minimizing the function
g, which is also unknown (since U’(.) is unknown). How-
ever, due to the structure of the dual problem, the function
g(p) can be approximately optimized using a first order opti-
mization technique such as projected gradient descent (refer
to Appendix C). In particular, this is the structure we ex-
ploit: we have access to the gradients of g and these turn out
to be functions of Z and the actual bundles purchased by the
buyer. Thus, we can set a price p, interact with the buyer
to observe the bundle purchased x*(p) and get access to the
gradient. Formally, the following Lemma 2 shows that the

bundle z*(p) purchased by the buyer gives a gradient of the
Lagrange dual function g(-) at p.

Lemma 2. Since the convex program in Equation (3) has
a unique optimal solution, therefore g(p) is differentiable at
each p € P. Moreover, if a price vector p induces bundle
x*(p), then the gradient of g(p) at p is given by Vg(p) =
F—a"(p).

Next, we focus on the restriction to realistic prices. We are
constrained to set prices only from the realistic price space
‘P, so we can only solve a restricted version of the dual pro-
gram in Equation (4), which we denote as rréig g(p). The

p

following Lemma shows that instead of minimizing g(p) in
Equation (4) over p € R", if it is minimized over the realis-
tic price space P as defined in Definition 1, then the optimal
value remains close to OPT.

Lemma 3. There exists a value R-OPT such that
mi7131 g(p) = R-OPT. Moreover, U'(Z) < R-OPT < U'(Z) +
pE

T, where

8
2L\’ s (2\T7
T = maX{Aval <L> ) A;alﬂ <L> }+L717 &)

L=p°+A||_wand L = ||p° — Al|e (p° and A defined
in Definition 1).

The dual function g(p) is convex, and the following
Lemma 4 further shows that g(p) is also strongly smooth
(defined in Appendix B).

Lemma 4. The function g(p) is p-strongly smooth with re-
spect to the ||-||2 norm.

Convexity and smoothness of g¢(p) are useful be-
low, where we give a projected gradient descent (re-
fer to Appendix C for a brief description) procedure
LEARNVALUE(Z, 7) (Algorithm 1). Given a target bundle
Z € C and an error budget 7 (this is the same value appear-
ing in Lemma 3), LEARNVALUE(Z, 7) minimizes g(p)over
the realistic price space P defined in Definition 1, with an
additive error of at most 7.

Theorem 5. (Main Supporting Result) Assuming g(p1) is
known and that T > R*7y5, LEARNVALUE(Z, T) (Algorithm
1) can estimate R-OPT to accuracy 1. That is after T =
% interactions with the buyer,
9(p,) —R-OPT < 1,

where g(pT)/ is the estimate of R-OPT returned by
LEARNVALUE(Z, 7).

Proof. The value of g at each each of the subsequent iterates
of the projected gradient procedure can be approximated us-
ing Lagrange first order approximation. Thus,

9(e+1) = 9(pe) +Vg(pe) P41 —pe) + &1, t € [T —1],



Algorithm 1 Solving the Lagrangian Dual

1: procedure LEARNVALUE(Z,T)

2 Initialize: p; and T = 7_58’;;;‘;2.

3: fort=1,---,T do

4 Observe the purchased bundle, z*(p;),by the

buyer.

bl

Update the price vector with projected gradient
descent:

pe =] [pt — (@ — x*(pt))l :

P

where 7;

6: =7/lIVg(ps)||, and v = 1/T
7: end for

8

9

, T-1
return g(pr) = g(p1) + 21 Va(pt)(pe+1 — pt)-
t=

: end procedure

where £ is the Lagrangian error. Therefore, adding the val-
ues of g at each iteration, the sum telescopes and we get

T-1 T-1
g(pT) = g(pl) + ng(Pt)(PtH - pt) + th+1
1=1 t=1

T-1
+D 8
t=1

where ¢(p,) is the estimate of g(p,) returned by
LEARNVALUE(Z, €) (Algorithm 1). Thus,

T-1 T-1
9e) — 90) | =D _Eal €Y €l (6
t=1 t=1

Now using Taylor’s remainder theorem (Theorem 16 in
Appendix D) and the fact that g is ps-strongly smooth,
1IV29(P)|Imax < [IV29(p)|l2 < po for all p € P, we have

€] < %Hptﬂ el Vi=1,..T—1. ()
Now using Equation (7) in Equation (6), we get

112
Q(PT) —9(ps) < > Z [pe+1 — pell3- (3)

Plugging Equation (8) in the followmg
* 2 2
— +T
Ip TP1H2 7" ©)

g(pT) — R-OPT S 1
27 1 INZICDIR

which is the guarantee for projected gradient descent (The-
orem 15 in Appendix C) we get:

T Y et

(10)

H2
Z el

Therefore, in the Algorithm 1, by choosing constant step
lengths in the projected gradient descent procedure i.e., 1, =
VIV (po)ll, where v = 1/T we get |[piy1 — pill =
for each t = [T — 1]. Now, by assuming ||Vg(p:)|2 =
|z — z*(p)]l2 < 72 and ||p* — p1|| < R, Equation (10)
becomes:

R’y v po
= "9 TorTaor

Note that 7 as defined in Equation (5) is greater than R?,

by assumption. Thus, after at least T > % itera-

tions the Algorithm 1 produces a solution g(pz) , which is
T-optimal. O

9(p,)

Therefore, combining Lemma 3 and Theorem 5, we have:
U'(z) < g(pr) <U'(Z) + 2. (11)

Hereafter in this section, for the sake of simplicity of il-
lustration, we focus on learning the buyer’s utility function
U(z) = Ty = S%_, af - x; assuming it is linear in both
the coefficients and the bundle (this is without loss of gener-

ality). Hence Equation (11) becomes:

a*'z < g(pr) <a*” x—&—— Z\/ml +27 (12)

Interval containing the value U (Z): It turns out that for a
target bundle 7, that the seller has in mind, she can compute
an interval [b,, b, ] using the uncertainty ellipsoid E; such
that it contains the scalar value 27a*. Lemma 6 gives the
optimum values of the following convex programs:

b, = min z¥a, andb, = max Z'a.
acE(A,c) acE(Ac)
Lemma 6. ( ) For any
T € R\ {0},

arg min Fla=c—b,

arg max Zla=c+b,
acE(A,c)

acE(Ac)

where b= Az/VzT AZ.

So, if g(pr)’ < (b+b)/2 = zT¢, then the unknown
parameter a* lies in the halfspace

H={acR":z27a<2%¢}. (13)

On the other hand if g(pr)’ > (b+ b)/2 = ¢, then by
Equation (12), the unknown parameter a* lies in the halfs-
pace

(14

The main algorithm: Now we present the LEARN-

UTILITY algorithm (Algorithm 2) for learning the parameter
a* of the buyer’s utility function.



Algorithm 2 Learning Utility Maximizing Buyer’s Model

1: procedure LEARN-UTILITY (¢)
2: Ey = E(Ag, o) C R™ is the initial uncertainty el-
lipsoid with Ay = R, - I for R, > 0 as defined in

Theorem 9.
Pick bundle z; = arg max /xT Agx
S
do

Compute b; and b; using Lemma 6.

g(pr) + LEARNVALUE(2¢,T)

if g(pr) < (b+b)/2 = xlcthen H, is (13),

else H; is (14).

E;+1 = LIohn(E; N Hy) (here LJohn() finds the
Lowner—J ohn ellipsoid of its argument).

10: Pick bundle z; = argmax /2T Ay 12

zeC

11: while (2\/ [L';FA,H,ll’t > 6)

12: end procedure

WReR>UNh W

Analysis

Note that in LEARN-UTILITY , the uncertainty ellipsoid
E, 1 for the next iteration is updated using the computa-
tion Ey4+1 = LJohn(F; N H;), where H, is defined by either
Equation (13) or (14). The former induces a central cut in
the ellipsoid E;(A, ¢), i.e. the hyperplane H; passes through
the center ¢ and eliminates half of the volume of the ellip-
soid. On the other hand, the later hyperplane induces a shal-
low cut and removes less than half of the volume. Without
loss of generality (as we only need an upper bound on the
number of iterations needed by LEARN-UTILITY to learn
a™), we assume that at each iteration the relevant hyperplane

induces a shallow cut. That is, H; is either of the following:
Hy={acR":zla<azlc+d}or

15)

={aecR":zla>axlc—6},

where § = (;1 <Z, /xt,) + 27) is the depth of the cut

i=1
induced. For LEARN-UTILITY to work we need the depth

/2T A . 2T A .
6 to be at most %, ie. 0 < % As the portion

n
4 . . . .
o (Z‘ /xti) takes effect only in tie-breaking, i.e., we can
i=1
assume (i to be a large constant. Hence, the constraint on
the depth of the shallow cut becomes \/xtTAtxt > 2nrT.
Also, note that the Algorithm LEARN-UTILITY continues

as long as 2\/xtTAta;t > €. So the shallow cut condition
is met (in other words the algorithm is able to find an z; in
each iteration) as long as 7 < ¢/4n.

Next, the computation of the Lowner-John ellip-
soids of the sets that remain after shallow cuts follows
from ( ). The Lowner-
John ellipsoid of the set Ey(Ay, ;) N{a € R™ : afa <

e + 6} is E(Ai1, ¢ — 1Zﬁ‘tbt), and of the set
E(Ap,e)n{a e R : xla < zlec— (5} is E(Air1, 00 +

14+nay

HTtby), where o = —m = AN af Ay

and Ay is defined in Appendix A.

In what follows we present the performance guarantee of
the Algorithm 2. Firstly, to bound the minimum eigenvalue
An, at successive iterations of our algorithm, we give the fol-
lowing two lemmas from ( )
also applicable in our setting. In (

), they are used in the analysis of a different algorithm
in a different setting (regret minimization).

Lemma 7. For any iteration step t, we have A\, (A¢11) >
(n+1 (At>

Lemma 8. There exists a suﬁiczently small k = k(n) such
that if \, (Af) < ke® and 2T Ayxy > *6 , then A\ (A1) >
An(At), i.e., the smallest elgenvalue doesn 't decrease after
the update. One can assume k = m.

Using the above two lemmas, we can show that the num-
ber of rounds needed by LEARN-UTILITY is upper bounded.

Theorem 9. The algorithm LEARN-UTILITY terminates af-

ter at most 20n? ln (w) iterations, where R, is the

radius of the initial uncertainty set Ej.

Combining Theorem 5 and 9, we get the following bound
on the interactions needed to get a tight uncertainty set
around the unknown parameter a* of the buyer’s utility func-
tion.

Theorem 10. (Main Result) Assume that the feasible set C,

the realistic price set P and the algorithm parameter € obey

the condition: RQ’yg <7< ﬁ. Then, after at most t - T

interactions with the buyer, where t = 20n2 In (%)
T—R?

certainty set E(Ay, ¢;) such that the buyer utility parameter

a* € E(Ay,¢;) and ma5<2 2T Aix <e
xE<

and T = 50772“;2 algorithm LEARN-UTILITY outputs un-

5 Discussion

We now make a few comparative remarks about our solu-
tion, and discuss its limitations and potential for future work.
As mentioned before in Section 2, our method builds on two
recent previous works, viz., ( )
and ( ). In (

), the authors investigate a similar pricing problem
with a profit objective where: (1) they are concerned about
regret, (2) they have unknown costs for the seller, and (3)
they solve a particular Stackelberg game. In (

): (1) the authors learn a linear buyer valu-
ation function in a regret setting by pricing single items as
they arrive online and are described by a finite number of
features, and (2) they make use of uncertainty ellipsoids to
upper bound the number of suboptimal pricing choices while
maximizing profit.

From ( ), we re-purpose the
use of projected gradient descent based technique (used in
solving the convex program in Equation (3)) for interacting
with the buyer. While they do not need any specific vari-
ant of the gradient descent algorithm, we explicitly choose a
certain step rule (constant step length) to bound our learning



errors. Our own contribution here is the use of these gradient
descent moderated interactions for splitting the uncertainty
ellipsoids, whereas they use such interactions for solving a
specific structured Stackelberg game (requiring very differ-
ent tools and techniques in the process). Similar to (

), we use two specific eigenvalue
lower bounding lemmas (see Lemma 7 and 8) to bound the
number of rounds of interaction need by our algorithm, with
the key difference being the way the separating hyperplanes
are generated in each of our methods. Further, we note that
algorithms in both ( )and (

) cannot be easily extended to
the realistic prices setting (defined in Section 3), which is
our key emphasis here.

For the buyer models that we consider, the utility U (x)
need not be linear in the bundle, so even polynomial utility
functions can be learned as long as certain conditions such as
concavity and positive coefficients can be met. This makes
our algorithm and its analysis in Section 4 more generally
applicable. We completely side-step the issue of identifia-
bility of the model in our treatment, by reporting uncertainty
sets instead of point estimates of the true parameters. When
allowable prices are exogenous, it may happen that the best
uncertainty set is still very loose due to stringent pricing re-
strictions. Another important issue that we did not address
here is that of modeling stochasticity in the buyer models.
This is a very natural setting to propose algorithms for, and
has been addressed in, for instance (

). As our algorithm uses an ellipsoidal search template
for which noisy generalizations exist, it can potentially be
extended to the noisy case (appropriate noise models have
to be specified here). Our algorithm also uses projected gra-
dient descent while interacting with the buyer. Thus, noisy
gradient information obtained from the buyer can potentially
be dealt with as well. An empirical analysis of the perfor-
mance of the algorithm with real datasets would be a future
direction.

6 Conclusions

In this paper we proposed a sample efficient online method
to learn the behavior model of a buyer that maximizes utility
without any budget restriction, by controlling prices. One
of the key advantages of our algorithm is that it is amenable
to exogenous pricing restrictions imposed by business and
managerial constraints, making it relatively more practical
and user-friendly than previously proposed approaches. Us-
ing our algorithm, practitioners can build a model of buyer
behavior from purchase and pricing data, which can be sub-
sequently used for inventory, pricing and other business de-
cisions.

A Ellipsoidal Calculus

Here we discuss some technical preliminaries regarding el-
lipsoids. For more details, we refer the reader to (

).

Definition

Ann x n matrix A is symmetric if A = AT ie., itis equal
to its transposed matrix. A basic linear algebra fact states
that every symmetric matrix A admits an eigenvalue decom-
position, i.e., we can write A = QDQT, where Qisan xn
orthogonal matrix (i.e., Q7 Q = I) and D is a diagonal ma-
trix with elements with elements A; > --- > \,, in its main
diagonal. We refer to \;(A) as the i largest eigenvalue of
A. A symmetric matrix is said to be positive definite if all of
its eigenvalues are strictly positive, i.e., A\g(A) > 0.

An ellipsoid E is a subset of R? defined by a vector ¢ €
R?, which we call the center and a positive definite matrix
A as follows:

BE(Ayc):={zecR: (2 —)TA Yz —¢c) <1}

Each of the n radii of E(A, a) corresponds to the square
root of an eigenvalue of A and the volume of the ellipsoid is
given by:

where V/, is a constant that depends only on n and corre-
sponds to the volume of the unit ball in R™. Since the vol-
ume only depends on the matrix A, we will sometimes sup-
press the center ¢ and write VOL (E(A)).

Bounding the Intersection of an Ellipsoid and a
Halfspace

The hyperplane perpendicular to a vector p € R™ \ {0}
and passing through c is given by H = {p/(z — ¢) = 0}.
This plane cuts the ellipsoid E(A,c) in two symmetric
pieces. The smallest ellipsoid containing either of these
pieces (called the Lowner John ellipsoid) can be computed
as follows. The smallest ellipsoid containing E(A, c)N{x €
R™ :p/(z — ¢) < 0} is E(A, ¢ — 45b) and the smallest el-
lipsoid containing E(A,c) N {z € R™ : p/(x — ¢) > 0} is

E(A c+ ﬁb) where:

n2

. 2
A= A— / = Ap/\/P'Ap. (1
7 ( n+1bb)7andb p/\/p'Ap. (16)

n

A central fact used in the analysis of any ellipsoidal search
method is that:

VOL (E(A)) < e~V/2" .VOL (E(A)). (17)
More generally, the hyperplane H = {x € R" : pTz <
~} intersects the ellipsoid E (A, ¢) if and only if:
ple—n
vpTAp
The Loéwner-John ellipsoid E(A’, ¢’) that circumscribes
the set F(A, ¢) N H can be determined as follows: if —1 <

a < —1/n,then E(A’, ") = E(A, ¢). On the other hand, if
—1/n < a <1, then

—1<a<1, where o :=

c’::c—1+nab
n+1
2
A= 2” (1fa2)(A,M 7,
n?—1 (n+1)(1+ )



where b is defined as b :=

\/;TAP. Further generaliza-
pT Ap

tions can be found in ( ).

B Holder Continuity, Strongly Convex and
Smooth Functions

Here we provide definitions for Holder continuity, strong
convexity and smoothness of functions, and state a theorem
which shows that strong convexity and smoothness are dual
properties.

We consider the function [ :
{z|f(z) < oo}

Definition 11. A function f : X — R is (A, 8)-Holder con-
tinuous for some constants X\ > 1, and B € (0, 1] if for any
(@) = F(W)| < Allz —yl|?.

Definition 12. A function f : X — R is p-strongly con-
vex with respect to a norm ||-|| if for all x,y in the relative
interior of the domain of f and o € (0, 1) we have

X — R has dom f =

Flaw+(1-a)y) < af(x)+(1-a)f ()~ 5 fa(l-a) -y

Definition 13. A function f : X — R is p-strongly smooth
with respect to a norm ||-|| if f is everywhere differentiable
and if for all z,y € X we have

|f(x) = fly) = Vi) (x

If f is also convex then,

0< f(z)— fly) —

W
—yl < Sz -yl

Vi) (@ —y) < Sl -yl

n
4
H(3wm)
l%str()ngly—concave, with respect to ||-||2 norm, over any con-
vex set C C (0, 1]™

Proposition 14. The function f(x) =

C Projected Gradient Descent with Constant
Step Length

Here we briefly discuss the projected gradient descent
method, with the choice of constant step lengths for the
stepping-rule. It is a first order method, i.e., it can be used
to find e-optimal solutions of convex optimization problems,
given access to the gradients of the objective.

Let P C R™ be a compact and convex set that is contained
in an Euclidean ball of radius R, centered at some point p; €
R™. Let g : R® — R be a convex function. Let [] denote

P
the projection operator onto the space P, such that for any
p 6 R’n

: 1 /12
= arg mimm — — .
l;l(p) gmin o lp =P[5

Projected gradient descent is an iterative algorithm that starts
at p; € P and iterates the following equation

Pi+1 = H (pt —n: Vg(pr)),
P

where 1), is the step size at iteration t. When 1; = m

(constant step length rule) for some « > 0, the algorithm has
the following performance guarantee.

Theorem 15. When g is a convex and P is a compact and
convex set, the projected gradient descent algorithm with

e = oo, Satisfies
[pe1 — pel|* =, and

. R? + ty?
> t 1 ’
272 =1 T

g(pt) — g

2
Let [|Vg(ps)|2 < G forall t. Then, g(p,) —g* < 2=

2
Thus, choosing v < 2¢/G, after at least m iterations,

the projected gradient descent algorithm produces a solution
that is e-close to the optimal.

D Taylor’s Theorem for Multivariate
Function Approximation
In this section we give the Taylor’s theorem for functions
of several variables. We start by defining the multi-index
notation.

A multi-index is an n-tuple of non negative integers.
Multi-indices are generally denoted by Greek letters o or

B:
a=(a,az, - ,ap), (a; €{0,1,2,---}).
If o is a multi-index, then
ol =a1 +as+ -+ an, o =ailag! -l
z,) € R"),
olal ¢

[e% e% Qn
0x{"0x5” - - Oxp

1. — xile x<212 l’a"

on (where z = (a1, -,

0" f =005t g f =
The number | is called the degree of «. Thus, the order of
o is the same as the order of x® as a monomial or the order
of 0“ as a partial derivative. The generic kth-order partial
derivative of f can be written simply as 0% f with |a| = k.

Theorem 16. Suppose f : R® — R is of class C**1 on
a convex set S. Ifa € Sandx = a+ h € S, then the
Taylor expansion and remainder for f(x) about the point a,
by restricting f to the line joining a and x, is given by

fla+h)= Zaaf(  pe + Ro i (h),

|| <k

where the remainder R, i, (h) in Lagrange’s form is given by

Ry ik (h Z 0% f(a+ ch)— for some c € (0,1).

|al=k+1

If max [0%f(z)| < M forxz € S, then

o] =k+1

k

All5

|Ra,k(h)‘ (k+ 1)
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