Computer Science > Artificial Intelligence
[Submitted on 23 Mar 2024]
Title:Learnable WSN Deployment of Evidential Collaborative Sensing Model
View PDFAbstract:In wireless sensor networks (WSNs), coverage and deployment are two most crucial issues when conducting detection tasks. However, the detection information collected from sensors is oftentimes not fully utilized and efficiently integrated. Such sensing model and deployment strategy, thereby, cannot reach the maximum quality of coverage, particularly when the amount of sensors within WSNs expands significantly. In this article, we aim at achieving the optimal coverage quality of WSN deployment. We develop a collaborative sensing model of sensors to enhance detection capabilities of WSNs, by leveraging the collaborative information derived from the combination rule under the framework of evidence theory. In this model, the performance evaluation of evidential fusion systems is adopted as the criterion of the sensor selection. A learnable sensor deployment network (LSDNet) considering both sensor contribution and detection capability, is proposed for achieving the optimal deployment of WSNs. Moreover, we deeply investigate the algorithm for finding the requisite minimum number of sensors that realizes the full coverage of WSNs. A series of numerical examples, along with an application of forest area monitoring, are employed to demonstrate the effectiveness and the robustness of the proposed algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.