
Lazy Explanation-Based Learning: 
A Solution to the Intractable Theory Problem 

Prasad Tadepall i* 
(Prasad.Tadepalli@cs.cmu.edu) 

Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, and 
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 

Abstract 

Explanation-Based Learning (EBL) depends on 
the ability of a system to explain to itself, based 
on the domain theory, that a given training ex­
ample is a member of the target concept. 
However, in many complex domains it is often 
intractable to do this. In this paper I introduce a 
learning technique called Lazy Explanation-Based 
Learning as a solution to the problem of intract­
able explanation process in EBL. This technique 
is based on the idea that when the domain theory 
is intractable, it is possible to learn by generaliz­
ing incomplete explanations and incrementally 
refining the over-general knowledge thus learned 
when met with unexpected plan failures. I 
describe a program that incrementally learns plan­
ning knowledge in game domains through Lazy 
Explanation-Based Learning. I present both em­
pirical and theoretical evidence for the viability of 
Lazy Explanation-Based Learning. 

1 Int roduct ion 

Explanation-Based Learning (EBL) systems learn by prov­
ing to themselves that a given training example is a member 
of a target concept. If they are successful in doing this, they 
generalize the instance to the class for which the same ex­
planation holds [Mitchell et al., 1986, Dejong and Mooney, 
1986]. 

However, in many combinatorially explosive domains 
like chess and circuit design, it may not be possible to prove 
that an example is a member of a target concept even if the 
system has a complete and correct domain theory. This 
problem is called the Intractable Theory Problem fMitchell 
et al., 1986, Tadepalli, 1986a]. Two-person games are an 
interesting domain where the explanation process is intract­
able because of the inherent uncertainty in the actions of the 
opponent. In particular, the complete explanation that a per­
son has a forced win in two-person games involves explor­
ing every possible action of the two players in the worst 
case. In fact, to learn only correct rules, even this much is 
not enough. Since many opponent's moves which are not 
applicable in the example may be applicable for problems in 
the generalized position, it is necessary to specialize the 
concept so that a given strategy works for all possible 
moves the opponent could ever make [Tadepalli, 1986b]. 
Assuming that the domain theory of the system simply con­

sists of goals and primitive move definitions for each player, 
this involves exponential search even if the system is given 
a sequence of optimal moves played by the two players. In 
this paper, I propose a solution to the intractable theory 
problem and illustrate it using a working implementation. 

The main idea in this paper is that when the domain 
theory is intractable, it is possible to learn by generalizing 
incomplete explanations, and to incrementally refine the 
over-general knowledge thus learned. In fact, most of the 
explanations that we give in everyday life are incomplete in 
the sense that they usually make a number of default as­
sumptions [McCarthy, 1980]. E.g., consider the kidnapping 
story in [Dejong and Mooney, 1986]. The explanation of 
kidnapping is simply that John, the kidnapper, figured that 
one could make money by kidnapping a rich person's 
daughter and demanding ransom. This explanation is so in­
complete that it does not even consider issues like the per­
sonal safety of the kidnapper. However, considering all pos­
sible hypothetical scenarios is computationally prohibitive. 
Our approach to this problem is to use the previously 
learned knowledge to reasonably constrain the hypothetical 
scenarios to a tractable minimum. Incomplete explanations, 
when generalized, lead to over-general rules. If the personal 
safety of the kidnapper is ignored in explaining the above 
example, the learned rule does not check for possible escape 
of the victim by threatening the kidnapper with a gun. When 
and if that happens, the system encounters an unexpected 
plan failure, which gives it an opportunity to refine its plans, 
provided, of course, it survives the surprise! 

The next section describes our knowledge representation, 
and the latter introduces our learning technique called Lazy 
Explanation-Based Learning through a program that learns 
planning knowledge in two person games. The program is 
illustrated using examples from king and pawn endgames in 
chess. A complexity analysis of our learning algorithm and 
some empirical results on our program arc presented next. 
Section 6 describes some previous work related to Lazy 
Explanation-Based Learning, followed by a discussion of 
various tradeoffs involved in Lazy EBL systems. The paper 
concludes with a summary and directions to future work. 

2 Knowledge Representation 

A domain is described to the system in the form of a domain 
theory consisting of a set of goals for each player, a set of 
legal moves defined as STRIPS-operators, a set of horn-
clauses which define the preconditions of operators in terms 
of more primitive predicates, and a set of operational 

*This work is supported by the National Science Foundation under Contract Number IRI-8740522, and Defense Advanced Research 
Projects Agency under Contract Number N00014-85-K-0116. The opinions expressed in this paper are those of the author and do not 
reflect any policies either expressed or implied of any granting agency. 

694 Machine Learning 



predicates of which the preconditions of the learned rules 
are to be composed. 

Knowledge is represented by a set of inter-related goals 
and plans for each player. A goal consists of a definition 
expressed in a quantifier-free logic, a sign , and a number 
called promise that indicates the worth of the goal. As­
sociated with each goal, there may be a set of optimistic 
plans, or o-plans that can be used to achieve the goal. The 
body of an o-plan is a sequence of generalized moves, each 
move being preceded by the weakest conditions that must 
be true of a state so that the rest of the move sequence is 
applicable in that state (cf. Table 2). Each move in the 
o-plan is associated with a player who makes that move. 
The order of moves in the o-plan is fixed, except that when 
two successive moves are to be made by the same player, it 
is assumed that there is an irrelevant move by the opponent 
between those two moves.1 Al l the moves in the o-plan are 
locally relevant in that each move either directly achieves a 
part of the goal or enables another move that follows it by 
satisfying some of its preconditions. 

O-plans are related to other o-plans through sub-plan and 
counter-plan relations. An o-plan P is a sub-plan of another 
o-plan Q, if, under some circumstances, P enables some 
conditions necessary for Q. Similarly, an o-plan P is a 
counter-plan of Qt if, under some circumstances, achieving 
P disables some conditions necessary for Q. 

To use an o-plan in planning, the free variables in the 
precondition of some suffix of the o-plan body must be 
instantiated. Because of the inherent uncertainty introduced 
by the moves of the opponent in two-person games, in many 
positions a single o-plan is not adequate to achieve one's 
goals. So the planner combines o-plans into more compli­
cated c-plans using plan combinators such as SEQ, and 
MESH. Trivially, every instantiated o-plan is a c-plan. 
SEQ produces new c-plans by sequentially composing its 
component c-plans. MESH produces new c-plans by inter-
'eaving its component c-plans in all possible ways. (See 
.Tadepalli, 1989] for details.) Similar plan combinators are 

used in [Bratko, 1984], and [Campbell, 1988]. The 
complexity of a c-plan is the total number of o-plans in the 
c-plan. 

3 Lazy Explanation-Based Learning 

In this section, I introduce a learning technique called Lazy 
Explanation-Based Learning, which is based on the idea 
that it is much easier to produce an incomplete explanation 
in many domains than it is to produce a complete explana­
tion. Incomplete explanations, when generalized, give rise 
to over-general o-plans. In many cases, one might never 
need to revise the o-plans acquired in this fashion. However, 
in some cases, an o-plan might lead to an unexpected plan 
failure at which point the explanation is elaborated just 
enough to explain the failure, and a new counter-plan to the 
failed o-plan is learned. 

Our method is embodied in a program called LEBL (Lazy 
Explanation-Based Learner), which is implemented in two 
person game domains. Our system has two main com­
ponents: a learner and a planner (cf. Figure 1). In addition 

to the domain theory, the input to the learner consists of 
example games, i.e., a board position and a sequence of 
moves played from that position. Typically some goals of 
either player are achieved during the play. The output of the 
learner is a set of new o-plans and possibly new goals, and 
modifications to the old o-plans. The planner accepts a 
board position as input and outputs a (partial) solution tree 
for that position. The solution tree may be criticized by the 
teacher by playing with the system which helps the learner 
refine its o-plans. The learner calls the planner to explain the 
consequences of any alternative moves (i.e., moves other 
than those input by the user) of the two players generated 
using the previously learned o-plans. 

1As in [Fikes et al. f 1972], while planning, each o-plan is tried 
from the last suffix of its body toward the first until either the 
precondition of one of them matches the problem or none of the 
preconditions matches it. This has the advantage of trying a longer 
suffix of an o-plan only when no shorter suffix is applicable. 

3.1 Learning O-plans from Incomplete Explanations 
A complete explanation that a board position is a forced win 
for a certain player, is a proof (or solution tree) that the 
min-max of that position evaluates to win. An incomplete 
explanation that a board position is a forced win for a player 
is a proof (partial solution tree) that the min-max of that 
position evaluates to win when the moves of the two players 
are restricted to some subset of all possible moves. An 
incomplete explanation is typically produced by considering 
only a few of all the possible moves at each intermediate 
state in the expansion of the state space. A crucial problem 
here is to decide which moves to consider at each node. Our 
system assumes that apart from the moves actually input to 
the system, the only moves relevant are those that occur in 
the c-plans generated by the planner using previously 
learned o-plans; i.e., the planner assumes that it knows all 
the o-plans necessary to explain all the relevant alternative 
moves by both the players. We call this assumption the 
Omniscience Assumption. This allows the system to limit 
its search only to what it reasonably expects with its current 
knowledge of o-plans, while considering more alternatives 
for both the players as it learns more o-plans. 

The system is shown the chess position in Figure 2 and 
the subsequent line of play by the two players resulting in 
White's queening a pawn. Our top-level learning algorithm 
is described in Table 1. LEBL first checks that the move 
sequence is valid by proving that the preconditions of each 
move are satisfied when the move is made. The generalized 
versions of the proofs are also computed simultaneously in a 
manner described in [Kedar-Cabelli and McCarty, 1987]. 
Going backward from the final state, it then checks whether 
any goals in the system are satisfied for either player during 
the play. In our example, White's goal of queening his pawn 
was satisfied in the final state. If there is already an o-plan 
to queen a white pawn in the system and if this move can be 

Tadepalli 695 



interpreted as part of that, it makes that o-plan active. Since 
currently there is no such o-plan in the system, it creates a 
new o-plan with the postconditions initialized to the goal. 

Each move m is tested to see if it enables the precon­
ditions of any active o-plan, old or new. This is done by 
back-propagating the current preconditions of the active o-
plan across the m and testing whether there is any change. 
If m enables the precondition of a new o-plan, as in the case 
of White's move in this example, it is added to the o-plan 
along with the generalized back-propagated precondition. If 
the move is an expected move of an old o-plan P, nothing is 
done. If the move is not expected in P, but still enables it, 
sub-plan links are created from each o-plan P' which con­
tain that move to P. If no o-plan contains m, a new goal is 
created with the preconditions of P, and a new o-plan P' is 
started for this goal. Also, P' is made a sub-plan of P. 

If a move has no effect on the preconditions of a new or 
old o-plan, that move is irrelevant to that o-plan, and is 
dropped from that o-plan. Since none of Black's moves in 
our example enables the preconditions of White's o-plan 
(except by yielding the turn to White), all moves of Black 
are considered irrelevant. All moves of White are relevant 
since they either directly achieve the goal (White's c7 -> c8) 
or enable White's other relevant moves. 

For each intermediate state in the move sequence, the 
learner calls the planner to search for any alternative plans 
that could have been used by either player leading to his 
goals. The planner works by alternately generating new c-
plans for each player and testing them against all the old 
c-plans (of complexity < a user-given parameter k) of the 
opponent. The generation consists of combining its current 
library of o-plans (the Omniscience Assumption) using the 
plan combinators SEQ and MESH. The testing consists of 
expanding the game tree to include the moves consistent 
with the two plans being tested and reevaluating its min-
max. The planner switches sides from a player if it is suc­
cessful in finding a c-plan that changes the min-max value 
of the position in that player's favor. It terminates when it 
fails to generate any new c-plans of a given maximum com­
plexity (3 in our experiments) that can improve the min-max 
value of the position. (See [Tadepalli, 1989] for more 
details on the planner.) After the planning is complete, the 
c-plans that occur in the solution tree of the two players are 
added to the corresponding active old plans. 

In this example, since the system does not have any o-
plans in its Ubrary at first, the planner returns with no ad­
ditional moves explored. From this example, LEBL extracts 
a simple plan of pushing a pawn through from the 5'th rank 
of any column to the 8'th rank, and queen. After the back-
propagation, the generalized preconditions for each move 
are simplified. The simplification consists mainly of remov­
ing the redundant preconditions, partial evaluation, and sort­
ing the preconditions according to a predefined predicate 
order for efficient matching. Table 2 shows the o-plan PL\ 
learned from the first example. 

The body of the o-plan PL\ consists of three rules, each 
corresponding to the position of the pawn in each of the 
intermediate states in the example including the first state. 
The left hand side of each rule describes the weakest con­
ditions under which the rest of the o-plan can be executed 

696 Machine Learning 



provided no other o-plan of the opponent interferes with it. 
E.g., the first rule recommends pushing a white pawn in the 
fifth rank if the squares in the sixth, seventh and eighth 
ranks in the same file arc free. Similarly, the second rule 
says that a white pawn in the sixth rank must be pushed if 
the corresponding seventh and eighth rank squares are free, 
and so on. 

3.2 Refining Over-general Knowledge 
From our point of view, the most important thing to notice 
in the first example is that it is not fully explained how 
White could have won for all possible lines of play by 
Black. As a result, the plan PL1 is over-general, and some­
times leads to unexpected failures as in the following ex­
ample (Figure 3). Failures present the system with oppor­
tunities to refine its over-general plans. The refinement oc­
curs by learning a new o-plan for the opponent and storing it 
as a counter-plan to the original o-plan. 

2That means output any c-plan whose solution tree has a min-
max value >200. 

3. Back-propagates the negative goal across the 
input move sequence and learns a new o-plan 
for the opponent. In our example, the body of 
this new o-plan PL2 (see Table 3) consists of 
two moves: the first move is by White and it 
consists of pushing a pawn when there is a 
black pawn two ranks ahead in its left adjacent 
file. The second move consists of the black 
pawn taking the white pawn (in its right 
diagonal position). 

4. Indexes the negative plan under the negative 
goal, and stores it as a counter-plan to the 
failed o-plan. (i.e., the new o-plan of Black, 
PL2, is stored as one of the counter-plans to 
PL\.) 

From now on, the planner considers this o-plan of Black 
to refute White's o-plan to queen whenever it is attempted. 
So it does not propose the plan (e5->e6 e6->el el ->e8) 
again to queen the pawn in this example.3 For reasons of 
modularity, LEBL stores this o-plan separately and links it 
to the original o-plan of White with counter-plan links in­
stead of directly modifying the applicability conditions of 
White's o-plan. 

4 Analysis of Algorithms 

In our analysis, we assume that the c-plan complexity is 
bounded by k. We let n be the average o-plan branching 
factor, i.e., the average number of o-plan matches in each 
state, and let / be the average o-plan length. We make the 
assumption that the cost of proving an operator precondition 
is of the same order of complexity as proving an o-plan 
precondition. Let p denote the number of o-plans in the 
knowledge base, g denote the number of goals, and s denote 
the length of the input move sequence. 

Our learning algorithm can be decomposed into two 

3Interestingly, it proposes the plan (c5—>c6 c6 —»c7 cl —>c8) 
instead! The problem is that the notion of symmetry is not captured 
in the way the rules are represented in the system, and thus the two 
pawn captures by the black pawn have syntactically different ex­
planations. After a subsequent, similar learning experience, the 
system learns to prepare for this kind of pawn capture as well. 

Tadepalli 697 



parts: one part is checking that the move sequence is correct 
and extracting any goals and/or plans present in the se­
quence, and the second part is exploring alternative moves 
by calling the planner. The complexity of the first part of the 
algorithm is given by 

The planning cost at each intermediate state is (See 
[Tadepalli, 1989] for details): 

Mult ip ly ing the above by s, the length of the input move 
sequence, and adding it to the cost of back-propagation, and 
simplifying, we have 

In order to get some idea of the savings obtained in our 
system compared to an EBL system that learns from com­
plete explanations, we compare its worst-case complexity to 
that of an algorithm. It should be remembered, 
however, that even an algorithm cannot be directly used 
to learn correct rules in games since the moves which arc 
not applicable in the example might be applicable in the 
generalization of the example [Tadepalli, 1986b]. However, 
the complexity of producing correct rules is at least as high 
as that of an algorithm assuming that the program has 
no access to any other control knowledge. If the average 
branching factor of the game tree is b,4we have 

Since we assumed that the match costs in both the al­
gorithms are of the same order of complexity, the major 
savings in L E B L is going to come from the exponent 2K, as 
opposed to s in In order to be able to f ind the solution 
that LEBL 's planner finds, the program must at least 
search for a depth that L E B L searches, which is 2lk, Hence 
we can say that all other things being equal, L E B L performs 
better than if the average length of the o-plans / is high. 
Further, it helps if the total number of o-plans p, the average 
o-plan branching factor n, and the maximum allowed c-plan 
complexity k are low. The above comparison reveals that 
Lazy Explanation-Based Learning performs better than an 
EBL program based on search if the natural distribution 
of problems in a domain is such that a high proportion of 
the problems are solvable by c-plans of low complexity built 
from a small library of long o-plans with a small branching 
factor. In the next section, this claim is supported empiri­
cally by comparing the number of nodes searched by our 
program to that of a program based on search. 

5 Empirical Results 

In order to compare the performance of L E B L to that of a 
program based on search, I implemented a separate 
program called ABE (Alpha-Beta Explainer), which accepts 
a board position, and a move sequence as input, builds a 
complete solution tree for that position using the algo­
r i thm, and outputs the number of nodes searched. ABE's 
evaluation function is the sum of the promises of all the 
goals in its domain theory which are satisfied in a given 
position. It is given one of the longest paths in the solution 
tree of the input position as a training move sequence and 
uses it to order the moves in its search (so that the move in 

4In our empirical experiments, b=5, and w=2 

Table 4: Nodes Searched in Learning 

the training sequence is tried first when applicable). ABE 
limits its search to a fixed depth given by the length of the 
input move-sequence and is allowed to return any solution 
tree whose min-max value is at least as good as the value of 
the final state in the training sequence. The only advantage 
of L E B L over ABE is its knowledge of o-plans. 

Init ial ly, L E B L is given three goals for each player: 
queening a pawn which is worth 200, (or -200 if it is a 
Black's pawn), taking the opponent's king of worth 10,000 
(or -10,000) and taking the opponent's pawn of worth 20 (or 
-20). We then trained L E B L on a set of 19 examples from 
the king and pawn endings. We input the examples one 
after another and recorded the number of states visited by 
the two programs. L E B L learned a total of 25 o-plans and 5 
new goals in this training session. After training, LEBL is 
once again given the same set of training examples to see 
how much more search is involved in explaining the same 
examples when more o-plans are present. This time, LEBL 
learned 5 new o-plans and no new goals. The new o-plans 
learned by L E B L this time were for the goals learned in the 
first training session. We ran L E B L a third time on the same 
set of training examples and L E B L learned no new o-plans 
or goals. 

The number of nodes searched by ABE and in the three 
training sessions of L E B L on the 19 examples are tabulated 
in Table 4. Ignoring the cost of matching the o-plans with 
problems, the number of nodes searched is a reasonable es­
timate of the search effort involved in learning. It is clear 
from the table above that L E B L consistently searched one to 
two orders of magnitude less number of nodes than ABE did 
on most of the problems tested. Even when the search effort 
of LEBL increased with the number of learned o-plans, it 
remained significantly less than the number of nodes 
searched by ABE. Surprisingly, in a few cases (e.g., 
Problem #6), the search decreased with learning more o-
plans. The reason for this is that when there is no o-plan 
present in the system to achieve a goal, it tries to combine a 
number of o-plans to achieve it. This causes additional 
search which is avoided by having an o-plan which directly 
achieves the goal. 

While training, L E B L is tested on a set of 8 new 
problems it has not been trained on, and each time, it is 
found to search at least an order of magnitude fewer nodes 

698 Machine Learning 



than the a-p search program. The number of errors as 
measured by an incorrect first move on the 8 test problems 
decrease gradually from 8 to 2, as L E B L learns from the 19 
training examples. These results support our claim that 
L E B L performs reasonably well even by learning from in­
complete explanations. It searches much fewer nodes than a 
program based on a-p search, and its errors on novel 
problems decrease gradually with learning. 

6 Related Work 

Prior to this work, [Pitrat, 1976] and [Minton, 1984J used 
methods similar to E B L to learn in game domains. PitraT' s 
program used procedurally encoded domain-specific heuris­
tics to "simpli fy" the chess position before generalizing. 
Minton's program avoided some complexity by learning 
only from those move sequences in which all the opponent's 
moves are "forced". Minton found that the preconditions of 
the learned rules are too complex to be efficiently evaluated 
during the problem-solving, and suggested that one must try 
to learn rules that recommended plausible good moves 
rather than provably optimal moves. The work presented in 
this paper can be seen as an approach in that direction. 

There are other EBL systems that make various 
simplifications and approximations to make explanations 
more tractable [Ellman, 1988,Chien, 1987, Bennett, 1987|. 
Ellman's program automatically makes assumptions like 
"ignore the history of the game" that greatly simplify the 
explanation. Chien's program uses defeasible assumptions 
about the persistence of certain facts during action se­
quences to simplify the explanations and refines the learned 
rules when it is faced with plan failures. This approach ap­
pears similar to Lazy EBL in many respects, one difference 
being that Chien's program, unlike ours, is mainly intended 
for single agent planning domains. Bennett's system deals 
with the intractability in mathematical reasoning by making 
simplifying approximations to mathematical formulae. 
While our work is consistent with all these approaches in 
general, it exploits a specific kind of simplification, that of 
giving an incomplete explanation, the extent of complete­
ness being determined by the current knowledge of the sys­
tem instead of by explicitly represented assumptions or 
simplification rules. 

In [Doyle, 1986], Doyle presents a program that is able to 
repair inconsistent domain theories by reasoning and learn­
ing at multiple levels of abstraction. However, at each level 
of abstraction, the explanation is complete. Unlike his 
program, L E B L is not given any abstract version of the 
domain theory. The component of our program that learns 
from negative examples is similar in spirit to the programs 
described in [Mostow and Bhatnagar, 1987], [Gupta, 
1987] and [Rajamoney et al., 1985]. When learning from 
failures, it is necessary to constrain learning in order to 
avoid learning too many uninteresting failure plans. L E B L 
addresses this issue by learning from failures only when a 
previously learned o-plan fails to achieve its goal. 

7 Tradeoffs in Learning 

Any learning system like ours must make several fundamen­
tal tradeoffs. One of them is the tradeoff between the learn­
ing time and the problem-solving (planning) time. The early 
EBL systems treated learning as forming schemata that can 
be directly instantiated during the problem-solving [Dejong 
and Mooney, 1986]. However, in complex domains like 
chess, it is simply not possible to learn a schema for every 

possible tactic, since that would require exorbitantly many 
schemata and many examples to learn them, instead, the 
problem-solver must be smart enough to flexibly apply its 
knowledge to the problem at hand. In our system, one way 
this tradeoff appears is as the question of when are o-plans 
composed. Our system makes the choice of learning only 
o-plans and composing them as needed during planning, 
thus requiring less training at the cost of more planning. 

Another tradeoff our system exploits is between the learn­
ing effort for a single example and the number of examples 
needed to achieve a given competence. The conventional 
EBL systems completely explain each example, and hence 
spend more effort on each example. Lazy EBL systems 
distribute the explanation effort over several examples, thus 
requiring many examples to converge to the complete ex­
planation produced by an EBL system. However, Lazy EBL 
performs better than an EBL system if the problem distribu­
tion is such that a rule learned from incomplete explanation 
is often adequate to make the correct predictions. 

A third tradeoff, also discussed in [Ellman, 1988], is be­
tween the tractability of planning and the accuracy of the 
results. As our system learns more o-plans, the search space 
of the planner increases, and planning becomes less tract-
able. However, as the search becomes more exhaustive, the 
number of errors in planning decrease which means that the 
accuracy of planning increases. Thus, the system can be 
described as traversing the accuracy vs. tractability tradeoff 
curve in the increasing direction of accuracy. 

8 Conclusions and Future Work 

In this paper, we showed that one way to solve the intract­
able theory problem is to generalize from incomplete ex­
planations and to refine the overgeneral plans when faced 
with plan failures. We illustrated this technique with an im­
plemented program in two-person games and presented 
some empirical and analytical results to bolster our claims. 
While the program is, in theory, general enough to accom­
modate any two-person games whose moves are describable 
as STRIPS operators, it has only been tested in a simple 
version of king and pawn endgames of chess. We believe 
that this method can be generalized to single agent domains 
by mapping the game trees to AND/OR goal trees. 

There are several open problems in our approach to in­
tractable theory problem. One of the main problems is the 
expensiveness of match - an instance of the utility problem 
discussed in [Minton, 1988]. We observed that much time is 
spent in LEBL in matching problems with o-plans, and this 
could become a major source of inefficiency after a number 
of o-plans are learned. Unfortunately, the match problem is 
NP-hard, which means that there are no general ways of 
making it faster in the worst case. In [Tambe, 1988], Tarn be 
and Rosenbloom address this problem by restricting the ex­
pressive power of learned rules. Another promising ap­
proach, pursued in [Flann, 1989], is to learn more abstract 
(and hence, easy to match) high-level control knowledge to 
guide search in the planning space. 

The problem of generalizing number and the structure of 
the explanation appear rather acutely in our domain. E.g., 
from the first example, a smarter program should be able to 
learn to queen a pawn from any rank. This is called the 
Generalization-to~N Problem. It appears that all the solu­
tions proposed to solve this problem (see [Prieditis, 1986], 
[Shavlik and Dejong, 1987], and [Cohen, 1988]) can be im­

plemented in the Lazy EBL in a straight-forward way. 
There are also several theoretical questions related to the 

Tadepalli 699 



Lazy EBL. E.g., how does the number of examples needed 
by a Lazy EBL system relate to the number needed by a 
normal EBL program to achieve the same level of com­
petence? Is there a sense in which a lazy explanation-based 
learner may be said to converge, and if so, how many ex­
amples does it need to converge? We raised similar ques­
tions about EBL in [Mahadevan et al., 1988] and provided 
one possible way to answer them. We are looking for more 
comprehensive theoretical models that can answer some of 
these questions for Lazy Explanation-Based Learning. 

Acknowledgments 

I thank my advisor Tom Mitchell for encouraging me to 
work on this problem and for supporting and guiding me 
throughout this work. Many helpful suggestions are made 
by Neeraj Bhatnagar, Oren Etzioni, Haym Hirsh, Sridhar 
Mahadevan, Tom Mitchell, Jack Moslow, Lou Steinberg, 
Milind Tambe, Ming Tan, Chris Tong, and the anonymous 
reviewers of this paper. Special thanks are due to Jeff 
Schlimmer whose detailed comments greatly improved the 
readability of the paper. 

References 
[Bennett, 1987] Bennett, S. Approximation in Mathematical 

Domains. In Proceedings IJCAI-10, Milan, Italy, 1987. 

[Bratko, 1984] Bratko, I. Advice and Planning in Chess 
Endgames. In Artificial and Human Intelligence, 1984. 

[Campbell, 1988] Campbell, M. Chunking as an Abstraction 
Mechanism. Technical Report CMU-CS-88-116, PhD 
thesis, School of Computer Science, Carnegie Mellon 
University, 1988. 

[Chien, 1987] Chien, S., Simplifications in Temporal Persis­
tence: An Approach to the Intractable Domain Theory 
Problem in Explanation-Based Learning. Technical 
Report UILU-ENG-87-2255, University of Illinois, 1987. 

[Cohen, 1988] Cohen, W., Generalizing Number and Learn­
ing from Multiple Examples in Explanation Based Learn­
ing. In Proceedings AAAI-88, St. Paul, Minnesota, 1988. 

[Dejong and Mooney, 1986] Dejong, G. and Mooney R., 
Explanation Based Learning: A Differentiating View. 
Machine Learning, 2,1986. 

[Doyle, 1986] Doyle, R. J. Constructing and Refining 
Causal Explanations from an Inconsistent Domain 
Theory. In Proceedings AAAI-86, Philadelphia, PA, 
1986. 

[Ellman, 1988] Ellman, T., Approximate Theory Formation: 
An Explanation-Based Approach. In Proceedings 
AAAI-88, St. Paul, Minnesota, 1988. 

[Fikes et al., 1972] Fikes, R. E., Hart, P. E. and Nilsson, 
N. J. Learning and Executing Generalized Robot Plans. 
Artificial Intelligence, 3(4):251-288, Winter 1972. 

[Flann, 1989] Flann, N. S. Learning Appropriate Abstrac­
tions for Planning in Formation Problems. In 
Proceedings of the International Machine Learning 
Workshop, 1989. 

[Gupta, 1987] Gupta, A., Explanation-based Failure 
Recovery. In Proceedings AAAI-87, Seattle, WA, 1987. 

[Kedar-Cabelli and McCarty, 1987] Kedar-Cabelli, S., and 
McCarty, L. T. EBG as Resolution Theorem Proving. In 
Proceedings of International Workshop on Machine 
Learning, pages 251-254, Morgan Kaufmann Publishers, 
Los Altos, CA 94022, June, 1987. 

[Mahadevan et al., 1988] Mahadevan, S., Natarajan, B., and 
Tadepalli, P. A Framework for Learning as Improving 
Problem-Solving Performance. In Proceedings of Spring 
Symposium Series: Explanation-Based Learning, 1988. 

[McCarthy, 1980] McCarthy, J., Circumscription - A Form 
of Non-Monotonic Reasoning. Artificial Intelligence, 
13,1980. 

[Minton, 1984] Minton, S. Constraint-Based Generalization: 
Learning Game-Playing Plans From Single Examples. In 
Proceedings AAAI-84, pages 251-254, Austin, TX, 
August, 1984. 

[Minton, 1988] Minton, S., Quantitative Results Concerning 
the Utility of Explanation-Based Learning. In 
Proceedings AAAI-88, St. Paul, Minnesota, 1988. 

[Mitchell et al., 1986] Mitchell, T., Keller, R. and Kedar-
Cabelli, S., Explanation Based Generalization: A Unify­
ing View. Machine Learning, 1,1986. 

[Mostow and Bhatnagar, 1987] Mostow, D. J. and Bhat­
nagar, N. Failsafe - A Floor Planner that Uses EBG to 
Learn from its Failures. In Proceedings IJCAI-10, Milan, 
Italy, August, 1987. 

[Pitrat, 1976] Pitrat, J. A Program for Learning to Play 
Chess. In Pattern Recognition and Artificial Intelligence, 
1976. 

[Prieditis, 1986] Prieditis, A. E. Discovery of Algorithms 
from Weak Methods. In Proceedings of the International 
Meeting on Advances in Learning, Les Arcs, Switzerland, 
1986. 

[Rajamoney et al., 1985] Rajamoncy, S., Dejong, G. and 
Faltings, B. Towards a Model of Conceptual Knowledge 
Acquisition Through Directed Experimentation. In 
Proceedings 1JCA1-9, Los Angeles, CA, 1985. 

[Shavlik and Dejong, 1987] Shavlik, J., and Dejong, 
J. BAGGER: An EBL System that Extends and General­
izes Explanations. In Proceedings AAAI-87, Seattle, WA, 
July, 1987. 

[Tadepalli, 1986a] Tadepalli, P. Learning in Intractable 
Domains. In Machine Learning: A Guide to Current 
Research, Los Altos, CA, 1986. 

[Tadepalli, 1986b] Tadepalli, P. Learning Approximate 
Plans in Games. Technical Report ML-TR-8, Rutgers 
University, 1986. thesis proposal. 

[Tadepalli, 1989] Tadepalli, P. Knowledge Based Planning 
in Games. Technical Report CMU-TR-89-135, Carnegie 
Mellon University, 1989. 

[Tambe, 1988] Tambe, M., Rosenbloom, P. Eliminating Ex­
pensive Chunks. Technical Report CMU-CS-88-189, 
Carnegie-Mellon University, 1988. 

700 Machine Learning 


