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ABSTRACT 

Concept learning is inherently complex. Without severe con­
straint or inductive "bias," the general problem is intractable. 
While most learning systems have been designed with built-in 
biases, these systems typically work well only in narrowly cir­
cumscribed problem domains. Here we present a model of 
concept formation that views learning as a simultaneous 
optimization problem at three different levels, with dynami­
cally chosen biases guiding the search for satisfactory 
hypotheses. In this model, the partitioning of events into 
classes occurs through dynamic interactions among three 
layers: event space, hypothesis space, and bias space. This 
view of the induction process may help clarify the problem of 
learning and lead to more general and efficient induction sys­
tems. To test this model of meta-knowledge, a variable bias 
management system (VBMS) has been designed and partly 
implemented. The system will dynamically alter evolving 
hypotheses, concept representation languages, and concept for­
mation algorithms by monitoring progress and selecting biases 
based on characteristics of the particular induction problems 
presented. VBMS is designed to learn the best biases for 
different types of induction problems. Thus it is robust 
(effective and efficient in many domains). The system can 
learn incrementally despite noisy data at any level. 

I . I N T R O D U C T I O N 

In theory the important problem of concept formation is sim­
ple: identify and describe useful classes of objects. Unfor­
tunately, this inductive problem is inherently complex 
(Watanabe, 1969). In practice, all inducers, both human and 
mechanical, must be able to reduce the number of hypotheses 
by choosing the proper constraints or biases (Mitchell, 1980). 

A. Mechanised Concept Formation 

Class formation partitions a universe of objects, 
instances, or events into subsets.1 A class is described by a 
concept A candidate concept is a hypothesis (Mitchell, 1982). 
Given a domain, the universe of possible events is divided into 
those events that are consistent with the description of some 
underlying concept and those that are not. This target concept 
(e.g. a Boolean function over all events) may be discovered by 
searching "hypothesis space," or by building and modifying 
hypotheses in "event space" (Michalski, 1983). 

1. To confound the problem, new objects or descriptions must 
sometimes be constructed, and it is the resulting universe that must 
be classified. This "problem of new terms" is discussed in (Michal-
ski,! 983; Rendell. 1985). 

While this "crisp" view of concept formation is prevalent 
in AI, a more refined view is useful in real-world environ­
ments. Since data are often uncertain, events may have 
degrees of class membership. Thus concept formation becomes 
the partitioning of the universe of events into graded utility 
classes, and instead of being a Boolean function, a concept 
becomes a multivalued, often probabilistic function 
(Rendell, 1986a; Zadeh, 1965). Moreover, since description 
languages are often deliberately constrained to control the 
difficulty, the concept may be imperfect; consequently 
hypotheses have degrees of credibility. So instead of being 
absolutely right or wrong, a hypothesis may also be assessed 
probabilistically (Rendell, 1986b; Watanabe, 1969). 

B. Combinatorial Complexity 

The practical problem faced in automated concept forma­
tion is managing the combinatorial explosion of hypotheses. 
The space of all hypotheses for a given problem contains every 
possible class description expressible in the language. Con­
sider, for example, a 10 X 10 grid of bits which can be used to 
encode different symbols. Each bit on the grid can be on or off 
independently of the others, yielding a total of 2100 possible 
patterns or events. If we want to learn a symbol, there are 
2(2100 )possible classifications or hypotheses to choose from. A 
naive "generate and-test" inductive system would consider 
each one of the hypotheses; even algorithms such as candidate 
elimination (Mitchell, 1982) cannot tractably solve this prob­
lem. 

We can reduce the combinatorial complexity by replacing 
the 100 primitive pixels by a reduced set of abstract features. 
For example, one feature might indicate the presence or 
absence of standard curves and strokes. If there were, for 
instance, only 6 features of 5 values each, there would be 58 or 
about 16,000 possible configurations. Yet even with this dras­
tic simplification, the number of possible hypotheses is 215625 

— still well beyond the limits of practical computation. 

To contain the combinatorial complexity, all learning 
systems employ one or more means of reducing the space of 
hypotheses. One simple method is to restrict the universe of 
events, as in our example, but there are several other ways. 
Techniques for pruning hypotheses provide inductive "bias." 

C. Induct ive Bias 

Mitchell (1980) defined bias as "any basis for choosing 
one generalization over another, other than strict consisiency 
with the observed training instances' (cf. Watanabe's (1969) 
"inductive ambiguity"). Bias encompasses all extra-evidential 
choices made to reduce the complexity of a learning problem. 
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These choices are often "hard coded" with the result That 
learning systems rarely perform well outside of narrowly 
circumscribed problem domains (such systems are "brittle"). 
This limitation can be overcome only by designing systems 
capable of dynamically altering their biases to accommodate 
new problems, as Utgoff (1986) has begun to do. 

One distinction among biases is their strength 
(Mitchell, 1980; Utgoff and Mitchell, 1982; Utgoff, 1986). 
Strong biases cause an induction systems to exclude a rela­
tively large proportion of possible hypotheses. Rendell (1986b) 
has quantified the notion of bias strength and used the meas­
ure to analyze some learning systems and the kinds of concepts 
they can manage; Haussler (1986) has formalized a relationship 
between bias strength and learnable concepts. In general, 
strong biases mean fast concept acquisition but they may miss 
the target concept; weak biases are more likely to include the 
concept but they usually retard learning to the point of infeasi-
bility. 

Although the notion of bias strength is a valuable one, 
our model of learning refines the problem along a different 
dimension: when and how to vary the bias. While Utgoffs 
(1986) variable-bias system dynamically invokes a weaker bias 
when a strong one fails, the decision is based on immediate 
experience. In contrast, we are concerned with accumulated 
experience and the connection between problems and the par­
ticular biases used to solve them (this is "meta-knowledge"). 

D. Scope of This Paper 
This paper will examine the problem of dynamically 

variable bias and the tools needed to address it. We shall 
detail the problem of bias from this perspective in the next 
section. Section III will describe our "three space" model of 
concept formation which facilitates a solution to the problem. 
Section IV will use this framework to develop the variable-bias 
management system, and Section V will present some prelim­
inary results which support the model. 

II. BIAS FLEXIBILITY AND BINDING TIMES 

Concept learning systems have implemented inductive bias 
with varying degrees of flexibility and power. Depending on 
system design, bias may be decided by the user, or it may be 
(partially) determined by the program. When bias selection is 
mechanized, its degree of automation may vary with respect to 
the range of bias choices and the flexibility of their selection. 

A. Fixed Bias 
The most common approach is to use a fixed bias, which 

is "built-in" at system design time and cannot be altered 
without changing the program. One common fixed bias 
excludes many hypotheses by abstracting secondary objects to 
be the objects from which the induction system generalizes. In 
Samuel's (1963) checkers program, the primary or "primitive" 
objects are board configurations, but the abstract or learned 
objects are k-tuples of highly descriptive features (such as 
piece advantage) which compress the information. Another 
way to supply fixed bias is to restrict the language for 
hypothesis representation. For example, a logic-based 
language may confine hypotheses to those having few disjuncts 
(Michalski,1983). By restricting the language of representa­
tion, systems limit expressible concepts; hence these systems 
speed processing but are applicable to some problems only. 

B. Parameterized Bias 
Some systems allow the user to instruct them to ignore 

or disfavor certain types of hypotheses. Because it can be 
altered at the beginning of a run, this is parameterized bias. In 
the AQ systems (Michalski, 1983), biases such as hypothesis 
simplicity are parameterized in the form of a "lexicographic 
evaluation functional" (LEF). An expression of hypothesis 
quality or preference, the LEF may be input by the user of AQ 
at run-time. For instance, a user might specify a preference 
for hypotheses having few disjuncts. The LEF thus biases the 
system towards "desirable" hypotheses while downgrading the 
less desirable. Lenat (1983) uses a slightly different approach 
to parameterized bias in Eurisko. In Eurisko a user can tem-
porarily suspend the processing in order to fine-tune a system 
parameter. 

C. Dynamic Bias 
A still more flexible induction system may be capable of 

altering its biases during the course of execution. This form of 
bias is (dynamically) variable. Unlike a parameterized bias, a 
variable bias does not require the user to make decisions; 
rather the system will "set" its own bias according to its 
experience. One step toward mechanizing the selection of a 
bias is Utgoffs system called "search for a better bias," or 
STABB (Utgoff, 1986). While solving a given problem, STABB 
is capable of forming a new disjunct to add to the hypothesis 
representation language. This expansion takes place if 
hypotheses using fewer disjuncts have been rejected by eviden­
tial criteria. 

D. More Powerful Variable Bias Management 
Despite its flexibility, STABB is limited to altering one 

kind of bias. Insofar as the control strategy involves a fixed 
ordering of choices, we might say the hypotheses are ordered 
by design-time criteria. In contrast, more powerful variations 
on the variable-bias scheme may not rely on a fixed ordering 
strategy. Instead, they would be capable of learning through 
experience just when different biases are appropriate. Not 
only would dynamic-bias management choose biases according 
to problem type, these schemes could have a greater range of 
choices. By using accumulated knowledge, they would sys­
tematically alter their biases, which would include not only 
aspects of representation such as features for event descrip­
tion, but also aspects of the inductive algorithm itself (e.g., 
hypothesis transformation operators might be selected to com­
pose an algorithm dynamically). The result would be an 
inductive system that is adaptive, efficient, and robust (i.e. 
effective over a wide variety of problem domains). 

This is the motivation for the variable-bias management 
system (VBMS). Biases are dynamically located and adjusted 
according to problem characteristics and past experience with 
similar problems. Through exposure to different types of 
problems, VBMS induces problem classes and identifies tech­
niques (biases) appropriate for each class. With experience, 
VBMS will evolve into a general learning system capable of 
identifying and effectively learning diverse classes of problems. 
The fundamental idea behind VBMS is the use of multiple 
layers of learning (see Buchanan et al.. 1978). 
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HI. A THREE - SPACE MODEL FOR LEARNING 

In this section, we shall view concept learning as a parallel 
inductive search through multiple spaces. The model will be 
used to explore interrelationships between spaces, to clarify 
the problem of concept learning, and to explain and develop 
VBMS (Section IV). 

The layers in our model are associated with three distinct 
spaces: event space, hypothesis space, and bias space. Event 
space orders the events to which the learning system might be 
exposed. Hypothesis space describes all possible partitions of 
the events into concept classes. Bias space specifies the poten­
tial combinations of constraints that may be imposed upon a 
hypothesis space. 

A. Event Space 
Inductive systems learn by extracting information from a 

set of events, which are the "ground objects" or basic cases to 
be formed into classes and described by the target concept. 
Events are provided to a learning system as descriptions, usu­
ally consisting of a list of features (such as shapes of figures or 
strategic board positions). The set of all features over which a 
system operates constitutes a feature space in which each 
feature forms a distinct dimension. Each point in this space 
represents a possible event. Since this space defines all possible 
events which the system might ever encounter, the space is 
called event space or E-space. 

We can consider similarity of events within E-space as a 
relevant criterion for assessing the ultimate "utility'' of events. 
By utility, we mean the degree of concept membership. We 
can view a concept as a surface over E-space, where the shape 
of the surface is defined by the utility function. If a point in 
event space has a high utility value, we may expect neighbors 
of that point also to be of relatively high utility. 

E-space proximity underlies many efficient induction 
methods such as hyperrectangle creation, discriminant 
analysis, conceptual clustering, etc. (Rendell, 1986b). Proxim­
ity in event space is useful, however, only if the utility surface 
is regular. A regular space can be visualized as a smooth sur­
face without abrupt deformations. Operationally, a regular 
utility surface means that generalization and specialization 
operators may proceed more efficiently (Rendell). 

B. Hypothesis Space 
The purpose of a concept learning system is to form a 

description extending the set of positive events to predict oth­
ers. But for any given set of events, there are many potential 
extensions. If the utility is simply binary, and if E-space has 
only 1000 possible events, 100 of which are known to be posi­
tive, then there are 2(1000 - 100) ~ 10271 valid extensions. 

A given system will attempt to select and describe the 
'correct" extension, where correctness depends upon the goals 
of the system. Each description is a hypothesis for what the 
correct one might be. Some hypotheses, however, are more 
"credible" than others, i.e. they more closely approximate the 
correct (target) concept. Thus, each hypothesis can be 
assigned a graded value called its credibility, which is analo­
gous to the utility of an event in E-space. In our example of 
1000 events, the induction problem is to guess the binary util­
ity value of the 900 unknown events. The greater the number 
of correct guesses, the better the (evidential) credibility. 

Each hypothesis may be viewed as a function u. The 
domain of u is the set of points in E-space; the range of u is a 
real number between 0 and 1 reflecting the degree of concept 
membership — u is the utility function. Each hypothesis is a 
complete surface over E-space which maps every point in E-
space to a specific utility. A hypothesis can therefore be 
viewed as a surface over E-space. The credibility of a 
hypothesis depends upon how closely the hypothetical utility 
surface matches the correct utility surface of the concept. 

Just as we may think of the set of events as constituting 
E-space, we may also think of the set of hypotheses as being 
organized into its own space. Given a particular representa­
tion for concepts and hypotheses, the space covering all possi­
ble hypotheses is called hypothesis space or H space. 

Inductive operators which generalize, specialize, or other­
wise transform hypotheses allow systems to move from one 
H-space point (hypothesis) to another. For example, in an H-
space based on logic, applying an operator that replaces a con­
stant with a variable results in movement to a more general 
hypothesis. 

The size and structure of H-space depends on the event 
and hypothesis description languages. Consider the problem of 
symbol recognition. If the experimenter uses 100 primative 
features (e.g. pixels), then an impractically large 2[2100]' yet 
highly expressive H-space results. To reduce the enormous H-
space resulting from a detailed event language, the experi­
menter could, e.g., restrict the hypothesis language to some 
logic function over a limited number of pixels. If instead, the 
experimenter used abstract features (e.g. x1 — number of 
lines, x2 — number of curves), then a much smaller H-space 
would result. Even so, feasible search requires techniques such 
as hill climbing, which take advantage of regularity or smooth­
ness in the function being optimized. 

Regularity in H-space can be defined like regularity in 
E-space, except that we use a credibility surface instead of 
utility. In a regular H-space, we may say something about the 
credibility of a hypothesis' neighbors once we know something 
about the hypothesis' credibility. Regular credibility surfaces 
in H-space mean that we can move to neighboring hypotheses 
without experiencing significant variations in credibility. If, on 
the other hand, there is no discernible regularity within the 
H-space, then a new bias may be employed to reevaluate 
hypothesis credibility. 

C. Bias Space 
The process of concept learning is equivalent to a search 

through hypothesis space -p the goal is to pick the "correct" 
hypothesis to classify the set of events. The choice of what 
constitutes the correct hypothesis depends on several factors. 
Evidential or E-space information will heavily influence the 
decision. Just as important, though, are the extra-evidential 
factors that constrain the potential form of the hypotheses. 
These factors are the system's biases. Different systems have 
different sets of biases and thus have different hypothesis 
spaces in which they operate. 

2. Since the time required to discover evidential credibility is 
usually extreme, a learning system is usually designed to estimate an 
additional component that is faster to compute — the "extra-
evidential" credibility. Since refined comparisons are helpful, the 
credibility should be graded rather than all-or-none (for other rea­
sons see Rendell, 1986b). 

310 KNOWLEDGE ACQUISITION 



In the symbol recognition problem, many possible biases 
could constrain the event or hypothesis description language. 
To describe grids, suppose we have 3 available representations: 
(1) binary pixel values, (2) shape frequencies (e.g. number of 
lines, etc.), and (3) line angle distributions. Suppose also that 
we have 3 inductive algorithms available which variously 
represent hypotheses as (1) linear discriminant functions, (2) 
prototypes, or (3) utility regions. Assuming the event descrip­
tions are compatible with the inductive algorithms, our possi­
ble choices of event and hypothesis representation languages 
define a simple 3X3 "bias space." 

In the same way that we proposed an H-space over all 
hypotheses, we can envision a third space over all biases. The 
collection of all possible biases make up this new space, called 
bias space or B-space. Each bias exists as a point in B-
space.3 Just as we viewed a hypothesis as both a point in H-
space and a utility surface over E-space, we may view a par­
ticular bias as both a point in B-space and as a credibility sur­
face over H-space. A credibility surface over H-space is a 
function that takes a hypothesis from H-space and maps it 
onto a credibility value. In other words, each hypothesis 
defines a utility surface over E-space, and each bias defines a 
credibility surface over H-space. Operationally, the credibility 
surface over H-space actually represents an ordering of all 
potential hypotheses to be evaluated in H-space. This credi­
bility surface is also (by definition) a point in bias space. 

Induction systems that are capable of dynamically alter­
ing biases work with a further measure. Just as a hypothesis 
has a credibility, a bias has a belief associated with it. Belief is 
the induction system's estimate of the "goodness" of a bias, 
just as the credibility is an estimate of the "goodness" of a 
hypothesis, and the utility is an estimate of the "goodness" of 
an event. 

D. Relationships Between Spaces 
Every point in E-space represents an event that the sys­

tem might possibly encounter; every point in hypothesis space 
is a utility function over the events in E-space; every point in 
bias space is a credibility function over hypothesis space. 
Choosing a particular point in hypothesis space is tantamount 
to characterizing the utility of every point in event space. 
Choosing a particular point in bias space is tantamount to 
characterizing the credibility of every point in hypothesis 
space. 

Many induction systems use the credibility surface over 
hypothesis space to guide the search for hypotheses (Ren-
dell, 1987). Similarly, induction systems vvith variable biases 
should be able to use a belief surface over bias space to guide 
the search for new algorithms and/or representation 
languages. Thus, in a manner analogous to identifying correct 
hypotheses through a search of hypothesis space, the "correct" 
bias for a given problem domain may be found by searching 
bias space. 

To say that bias space is regular means that the average 
difference in belief between neighboring points is small. In 
that case, a proper distance measure can allow a variable-bias 
system to perform what is essentially hill-climbing through 

3. "Bias" will be used to refer to either a single bias or a set of 
biases. Thus, while a system may assume several biases, the set of 
these biases will be called the system's bias. 

bias space. Unfortunately, two biases which may be very Hose 
together in the context of one problem may not yield 
sufficiently similar results in other domains. Even small varia­
tions in problem characteristics may produce cases in which 
two biases perform similarly in one situation but differently in 
another. However, if the experimenter (or the induction sys­
tem) knows or infers that two problems are sufficiently simi­
lar, then hill-climbing in bias space can be valuable. In that 
case, knowledge of the proximity of different biases in the con­
text of one problem can provide the basis for hill-climbing in 
the second problem. 

In all three spaces, the same essential phenomenon per­
mits the same basic techniques. Regularity or smoothness in a 
certain function allows efficient methods such as hill-climbing. 
Depending on the level of learning, the function may be called 
utility, credibility, or belief, but the important general 
phenomenon of proximate similarity is responsible for 
efficiency at all three levels. These ideas are expanded and 
analyzed in (Rendell, 1986b, 1987); the learning system using 
them is developed below. 

IV. VARIABLE-BIAS MANAGEMENT 

In Section II we saw that to avoid brittleness and extend 
efficacy, we need more flexible learning. According to the 
three-space model, flexible learning can be viewed as a parallel 
search across event, hypothesis, and bias spaces. The 
variable-bias management system VBMS is a realization of 
this concise multiple-space model. By controlling movement 
between the three spaces, the VBMS is designed to learn the 
most effective techniques of induction for a wide range of 
problem classes. 

Ideally, a learning system should be able to select its own 
biases. Biases (including representations, algorithms, and 
components of each) should depend on problem characteristics. 
Although this ability can be "hard -coded" into the system by 
the experimenter, doing so yields a system that performs well 
for a few problems familiar to the researcher but with no abil­
ity to learn from mistakes or adapt to new classes of problems. 
A more flexible approach is to let the system learn the concept 
of appropriate bias selection from scratch — as a direct result 
of problem solving experience. The VBMS begins with no 
knowledge of the appropriateness of biases, but gradually 
induces problem classes along with the corresponding biases 
most useful for the effective learning of the problems in each 
class. To explain the operation of the VBMS we begin with a 
discussion of a simplified, naive approach. 

A. Naive Bias Management 
One naive approach is to try all available biases for a 

given problem, calculate the average effect of each bias (over 
all problems encountered), and then use this general knowledge 
bias space to select future biases. Such a naive approach 
might consist of the following components: (i) a set of bias 
points (to determine a space of biases); (ii) a general belief 
table (to assign a belief 3 to each bias point); and (iii) a credi­
bility measure (to judge the correctness of hypotheses). 

A point in bias space is a choice of inductive algorithm, 
representation language, and any relevant parameters to the 
algorithm or language (e.g. number of disjuncts, splitting cri­
terion, etc.). The system records its belief B in each bias in a 
general belief table (GBT) which is simply a list of bias points 
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and corresponding B's. For example a simple bias space might 
have two-dimensions: (1) representation (e.g. number of dis-
juncts), and (2) algorithm (e.g. generalization or specializa­
tion). The general belief table might gradually assign greater 
beliefs to few disjuncts, perhaps because learning is faster and 
just as accurate. 

One natural measure of 0 is the credibility of the best 
hypothesis produced by a particular bias choice, relative to the 
credibility of hypotheses produced by other biases. Many 
credibility measures exist (both evidential and extra-
evidential), and the only restriction in choosing a credibility 
metric is that it be uniformly applicable to any hypothesis 
generated by the system. For instance, if the problem is char­
acter recognition, an appropriate credibility measure would be 
how quickly and accurately the hypothesis classifies characters. 

A bias management system operates in two modes: learn­
ing and performance. In the learning mode, the system tests 
all available biases on each given problem. Testing a bias 
entails running the associated inductive algorithm, measuring 
the credibility of hypotheses generated, and retaining the most 
credible ones. After ail biases have been tried, the system 
scales the credibilities of retained hypotheses to fit in the inter­
val [0,1], with the better hypotheses earning values closer to 1. 
These normalized credibilities represent the system's belief (3 
in each bias point, relative to a specific problem. 

As outlined in the three space model (Section III), these 
bias points and B's can be visualized as forming a surface over 
bias space with peaks representing relatively good biases. 
Since initial implementation of a bias management system 
would involve only a limited number of bias points (compared 
to the space of all possible biases), this "surface" is more 
conveniently represented as a belief table. A problem belief 
table (PBT) contains all biases explored for a specific problem 
and their estimated B's. Similarly the average of all PBT's 
created in the system's lifetime forms a general belief table 
(GBT). 

In the performance mode, the naive system simply tries 
the biases in its GBT in descending order of their estimated 
belief until an acceptable hypothesis is found or the rate of 
credibility improvement per bias tried falls below some thres­
hold. 

This bias management is more flexible than Utgoff's 
STABB, which has a limited set of biases and does not adjust 
their order. On the other hand, our naive algorithm is still 
limited. Its major fault is that it tries biases according to 
their average performance over all problems experienced. This 
approach makes no use of problem characteristics when select­
ing biases. Its behavior is analogous to a doctor who always 
prescribes aspirin regardless of the symptoms because he has 
found the drug to be effective in most situations. Even if this 
system were to encounter a new problem identical to a previ­
ously solved problem it would still use its general belief table 
rather than the more appropriate problem belief table. 

B. Improved Bias Management 

While naive bias management might be useful for certain 
applications, it would be too coarse. A cure is to perform 
induction on bias space itself, and allow the system to learn 
how to apply different biases to different types of problems. 
This meta-level learning is the basis of the variable bias 
management system VBMS. 

Intuitively, any similarity between a given problem and 
previously solved problems should influence bias selection. If 
the similarity is high, we are tempted to give some weight to 
the PBT (problem belief table) generated from related past 
problems when selecting biases for the new problem. If the 
similarity is low, the system may be justified only in using its 
general knowledge of bias space found in its GBT. The use of 
similarity to select biases assumes that similar problems will 
have similar solutions. Thus the appropriate choice of a simi­
larity measure is crucial to the operation of a more flexible 
bias management system. The VBMS uses a dynamic similar­
ity measure that evolves with experience. This dynamic assess­
ment of similarity is a novel feature of the VBMS and should 
result in great flexibility. 

To associate problem characteristics with effective biases, 
we need to introduce the idea of a problem space. Problem 
space is similar to event space except that its dimensions are 
global features of the problem rather than descriptions of 
events. Problem characteristics are user-defined and should 
be applicable to all problems presented to the system. For 
instance, if the VBMS consists of algorithms that process 
feature vectors, then potentially useful problem characteristics 
include the number of training events, the reliability of train­
ing events, the number of features per event, the grain size of 
features, and other properties of features. 

Over time, the system partitions the points in problem 
space into regions (problem classes) whose problem points have 
similar solutions (PBT's). In other words, problem points in 
the same region have similar bias beliefs or PBT's. The for­
mation of these regions involves a region belief table (RBT) to 
store regional beliefs. Like the GBT of the naive system, an 
RBT is an average of all PBT 's belonging to problems within 
the region. For example, regions of problem space where the 
grain size is large might have a strong belief in few disjuncts. 
Problems within the same region are considered "similar" with 
respect to their solutions and bias beliefs. (Similarities in 
values, tables, or functions can be used to form and modify 
regions; see Rendell, 1985.) 

Every new problem attempted by the VBMS is associated 
with a point in problem space. When selecting biases, the sys­
tem finds the region containing the new point in problem 
space, and uses the region belief table to select initial biases. 
Biases in the RBT are tried in order of decreasing belief until 
an acceptable hypothesis is found or the rate of credibility 
improvement falls below some threshold. If this approach 
fails, the GBT is then used to select a bias. 

At first VBMS exhaustively searches bias space for each 
new problem and learns only general knowledge of the belief 
surface (i.e. a GBT). As more problems are attempted, VBMS 
gradually learns relationships between problem characteristics 
and effective biases. This knowledge resides in the problem 
space regions and their associated RBT s. 

The reliance of VBMS on multiple iterations of concept 
formation suggests inefficiency. The system might be too slow 
if it had to construct a new region belief table for each new 
learning problem. But since this meta level knowledge (RBT) 
is accumulated for all problems encountered, the procedure is 
reasonable (as Section V begins to show). A more complete 
description of the VBMS algorithm appears in (Rendell et 
al., 1987b). 
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V. IMPLEMENTATION AND EXPERIMENT B. Initial Implementation 
We have begun to implement and test the VBMS. To explain 
details, let us first consider some concrete forms of bias. 

A. Kinds of Bias 

From the standpoint of computer implementation there 
are two basic manifestations of bias: representational (for 
description of events and concepts), and algorithmic (for con­
struction, transformation, and verification of hypotheses). 

1. Representational Bias 
Given a language such as DNF logic, the specific elements 

of the language (e.g. function symbols or attributes) and con-
straints on it (e.g. few disjuncts) are the biases that the user or 
system may control. The manifestation of bias as a variable 
number of disjuncts (Utgoff, 1986) is a special case of an 
imposed model: In uncertain environments, "number of dis­
juncts" becomes the number of peaks in the utility function. 
Additional constraints may confine the functional form (e.g. a 
linear combination of features — see Rendell, 1983). While 
functional forms such as the number of disjuncts are straight-
forward to modify, not all representational biases are easy to 
implement. For example, the choice of features is a complex 
research problem (Porter, 1986). 

2. Algorithmic Bias 
Given a hypothesis language having a particular 

representational bias, a concept learning algorithm is designed 
to search in an associated space for credible hypotheses that 
approximate the target concept. Since the learned concept 
may depend on details of the search, algorithms and algorithm 
components are also biases. Just as hypotheses space contains 
the desired concept, 'algorithm space" contains the desired 
algorithm for finding it. (We could think of algorithm space 
as being the subpace of the entire bias space that has to do 
with algorithms only.) Just as the target concept for the 
current domain problem is extracted from hypotheses space, a 
well behaved algorithm for the current learning problem is 
extracted from algorithm space. 

Depending on our representation of algorithm space, it 
could be more or less grainy. A very grainy algorithm space 
might contain a few fixed concept learning systems, such as 
AQ, ID3, PLS1, etc. (Michalski, 1983; Quinlan, 1983; Ren-
dell, 1983). In contrast, a refined algorithm space might con­
tain system components (such as operators for hypothesis 
transformation). In the simple (grainy) case, a completed algo-
rithm would be selected as a unit; in the complex (refined) 
ease, the algorithm would be constructed from its components. 

To initiate testing of variable-bias management, we 
wanted to begin with one of the simpler kinds of bias. We 
decided to begin with algorithmic biases and have the VMBS 
try to choose an entire learning system from a coarse algo­
rithm space. Unlike Utgoff's (1986) STABB, VMBS bases its 
choices on characteristics of the problem domain (although the 
characteristics so far are simple and syntactic). 

1. First Experiment: Bias as Algorithm 
In the first experiment VMBS selects one of three learning 

systems AQ15, ASSISTANT, and PLS1 (which are dissussed in 
Rendell et al., 1987a). The choice is based on the behavior of 
these three systems as a function of number of training events 
and number of features. In other words, problem space here is 
only two-dimensional: the number of events is on one axis, 
and the number of features in each event is on the other. 

Table I shows results involving a lymphography data 
base, using the learning systems AQ15, ASSISTANT, and PLSl. 
Initially, VBMS tries each algorithm on each problem, until 
sufficient experience is accumulated (at this time the criterion 
for "sufficient experience" is user-supplied, although full auto­
mation will simply be information-theoretic). 

The credibility measure should reflect performance, and 
should be include concept accuracy and processing time (meas­
ures for these are standard -•- see Rendell et al., 1987a). To 
keep the first experiment simple, our uniform measure of cred­
ibility is just the number of user-CPU-seconds (on a VAX780 
running under UNIX — all programs were written in Pascal). 
In this case we normalize credibility /i by just taking the quo­
tient: number of seconds used by the fastest algorithm over 
the number of seconds used by the given algorithm. In this 
case, with only three algorithms, a triplet of u-values is associ­
ated with each point in problem space. Call these values u, 
(AQ15), u2 (ASSISTANT), and u3 (PLSl), and the resulting u-
vector u. 

VBMS divides problem space by splitting it into orthogo­
nal rectangles, making the splits having the highest dissimilar­
ity rating (like the basic PLSl algorithm). To calculate the 
dissimilarity rating, VBMS first averages the u's for each of 
the three algorithms in the proposed regions. Call these aver­
ages for two tentative subrectangles 
Next, VBMS calculates 

(This is based on an information-theoretic measure and should 
generally include an error term: see Rendell, 1983.) 

* "Time" it user time in seconds. The (normalised) u is the ratio of the 
given algorithm's performance to the performance of the fastest algorithm 

Figure 1. Choosing biases dynamically according to problem charac­
teristics. Each element of a vector (here a triple) represents the per­
formance of a different bias. In this simple case, performance 
depends on the number of training events and the number of attri­
butes (giving a two-dimensional problem space). VBMS splits 
regions in problem space if different biases markedly affect algorithm 
performance. Here VBMS forms three distinctive regions. 
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2. Results of Initial Experiment 

VI . SUMMARY AND CONCLUSIONS 

Since induction is so complex, concept formation is feasible 
only by reducing the search space through the use of selective 
biases. Biases appear in many different forms (e.g. abstracted 
features, acceptable concept descriptions, etc.) and are usually 
fixed into the design of a system. Since any fixed bias is too 
restrictive for some problems and too slow for others, biases 
should be dynamic — for generally efficient and effective 
(robust) learning, we need better methods for managing bias 
mechanically. 

Previous work on dynamic bias has been quite limited. 
Utgoffs (1986) STABB includes a variable bias, but only in a 
form that does not learn to associate bias with knowledge 
about problems. 

We have outlined a robust multiple space model of learn­
ing and proposed a design for a variable bias management sys­
tem VBMS. In this model of knowledge and meta-knowledge, 
learning can be viewed as a parallel search across event, 
hypothesis, and bias spaces. The VBMS is specifically designed 
to learn biases and to induce their relationships to classes of 
problems, and thereby to support flexible learning across 
different problem domains. Unlike most other learning sys­
tems, the VBMS learns at different levels. 

An inductive algorithm performs better when it outputs 
hypotheses of higher credibility using fewer resources. Even in 
initial implementation involving a coarse "algorithm space," 
we have shown that VBMS performs better any of its subsidi­
ary algorithms alone. By dynamically adjusting its bias, 
VBMS can select and use a strong bias appropriate to a given 
induction problem. Thus it can combine the efficiency of a 
strong bias with the generality of a weak one. 

VBMS is a robust framework for probabilistic, multilay-
ered learning. Extensions include elaboration of problem space 
and bias space using analogy and other semantic information. 
These and other refinements (and algorithms for the system) 
are discussed in (Rendell et al., 1987b). 
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