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Abs t rac t 
Planning in any realistic sett ing requires the manage­
ment of an enormous amount of in format ion. This 
in format ion is generally temporal in nature; predic­
t i on , plan choice, and debugging all involve reasoning 
about t ime. The assertions manipulated by t radi ­
t ional predicate-calculus data base systems, such as 
Prolog, are timelessly t rue. In the temporal data base 
system described in this paper, the classical data base 
assertion is replaced w i th the notion of a tunc token. 
For any given event or fact type, the data base wi l l 
typical ly contain a large number of t ime tokens of 
that type. These tokens correspond to different oc­
casions when an event of that type occurred or a fact 
of that type was made true and remained so for some 
period of t ime. This profusion of t ime tokens of the 
same type presents a problem for systems support­
ing temporal deductions of the sort needed in plan­
ning. Many rout ine planning operations must search 
through the data base for tokens satisfying certain 
temporal constraints. To expedite these operations, 
this paper describes a computat ional framework in 
which common-sense strategies for organizing tem­
poral facts are exploited to speed search. 

I . I n t r o d u c t i o n 

Represen t ing and reason ing a b o u t t i m e p lay a c r i t i ca l ro le 
i n m a n y facets o f everyday p r o b l e m so lv ing . We con t i n ­
u a l l y have to make reference to w h a t has happened , is 
h a p p e n i n g , and m i g h t poss ib ly h a p p e n . T o make m a t t e r s 
m o r e d i f f i cu l t , we have to cope w i t h the fac t t h a t the w o r l d 
i s cons tan t l y chang ing a r o u n d us. To p l a n for the f u t u r e 
we m u s t be able to p red ic t change, propose a n d c o m m i t 
to ac t ions on the basis o f these p red i c t i ons , and no t ice 
w h e n ce r ta i n p red ic t i ons are no longer w a r r a n t e d . A l l o f 
t h i s requi res h a n d l i n g an eno rmous a m o u n t o f comp lex l y 
i n te rdependen t i n f o r m a t i o n . 

I n t h e pas t , t he p rob lems o f ef f ic ient d e d u c t i o n a n d 
reason ma in tenance in pred ica te-ca lcu lus d a t a bases used 
fo r p l a n n i n g have large ly been ignored as researchers have 
g r a p p l e d w i t h t he basic issues o f reason ing abou t dead­
l ines, i t e r a t i o n , cond i t i ona l s , b a c k t r a c k i n g , and the l ike. 

1 This work was supported in part by the National Science Foun­
dation under grant IRI-8612644 and by an IBM faculty development 
award. 

As ou r representa t ions have become more soph is t ica ted 
and ou r a m b i t i o n s to tack le more real is t ic doma ins have 
g r o w n , the p rob lems inheren t i n m a n a g i n g large tempo­
ra l d a t a bases have become a m a j o r fac tor l i m i t i n g g r o w t h 
[12] [11]. W h a t is needed is a c o m p u t a t i o n a l f r amew ork 
in w h i c h common-sense strategies for o rgan iz ing t e m p o r a l 
facts can be easi ly exp lo i t ed to exped i te the search needed 
to s u p p o r t basic t e m p o r a l inference procedures. As a s im­
ple examp le , suppose t h a t you are p l a n n i n g a business t r i p 
a n d you are t r y i n g to remember i f the t rave l agent has al­
ready con f i rmed you r a i r l i ne reservat ion. I t shou ldn ' t be 
necessary to recal l ( i e., search t h r o u g h ) a l l of the events 
pas t , present , and f u t u r e tha t invo lve you r c o m m u n i c a t i n g 
w i t h a t rave l agent. O n l y the most recent are l ike ly to be of 
in teres t . R e s t r i c t i n g a t t e n t i o n to a pa r t i cu l a r t ime f r ame 
requires t h a t facts t ha t change over t i m e are indexed tem­
porally, t h a t is to say, s tored in such a way tha t facts and 
events c o m m o n to a g iven t i m e f r ame are easi ly accessible 
f r o m one ano ther . You w o u l d also l ike to avo id expend ing 
energy on facts t h a t have n o t h i n g to do w i t h t rave l agents 
or a i r l i ne reservat ions. T h i s requires t ha t facts be xndexed 
syntactically. 

T e m p o r a l indices, un l i ke the i r syn tac t i c coun te rpa r t s , 
are sub jec t to f requent rev is ion . Q u i t e o f ten the span 
of t i m e associated w i t h an event or fact is sh i f t ed , com­
pressed, or expanded to su i t a change of p lans or ref lect 
new i n f o r m a t i o n . Suppose t h a t you decide to leave on you r 
business t r i p a week ear l ier t h a n p rev ious ly p l anned . F r o m 
th i s change, i t shou ld be apparen t t h a t ce r ta in prerequ is i te 
tasks (e.g. , o r d e r i n g p lane t ickets) mus t also occur ear l ier . 
O f t e n , such a change w i l l no t requ i re a m a j o r rev is ion of 
p lans. W h e r e mod i f i ca t i ons are needed, however , the d a t a 
base shou ld c lear ly i nd ica te j u s t w h a t pa r t s of a p l an have 
to r e - t h o u g h t and w h y (e.g. , y o u m i g h t have to ar range for 
t r a n s p o r t a t i o n to the a i r p o r t i n the event t h a t t he ear l ier 
d e p a r t u r e w i l l upset p lans to share a r i de w i t h a f r i end ) . 

To make accura te p red ic t i ons abou t t he f u t u r e i t i s 
i m p o r t a n t to have access to i n f o r m a t i o n a b o u t the past . 
I n f o r m a t i o n a b o u t the past helps us to u n d e r s t a n d w h a t 
went w r o n g in s i t ua t i ons where ou r act ions fa i l t o achieve 
the i r i n t e n d e d effect o r o u r p red ic t i ons fa i l t o co inc ide w i t h 
observa t ion . I n f o r m a t i o n a b o u t t he past also helps us to 
resume i n t e r r u p t e d or suspended tasks. Even i f we were 
to reconci le ourselves to t h r o w i n g away a l l record o f the 
m o r e d i s t an t pas t , we s t i l l have to consider t h a t there are 
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thousands of facts that we know are currently true and that 
are likely to figure in guiding our behavior. In addit ion, we 
generally keep track of a great many facts corresponding to 
long and short term goals and to predictions about the near 
and distant future. In any reasonably complex domain, 
the number of temporally dependent facts necessary for 
minimal competence is large. This paper describes how to 
go about organizing and maintaining these facts. 

I I . Thesis 
[4] describes an approach to reasoning about time and 
a temporal data base management system that supports 
temporal reasoning of the sort necessary for planning. The 
temporal data base is called a time map [8], and the data 
base system is called a time map manager or TMM. In the 
TMM, the classical data base assertion is replaced by the 
notion of time token corresponding to a particular interval 
of time during which a general type of occurrence (a fact 
or event) is said to be true. For any given fact or event 
type, the time map wil l typically include many tokens of 
that type. The most expensive operation distinguishing 
temporal data base manipulations from those performed 
by static data base systems (e.g., Prolog) involves find­
ing tokens that satisfy certain temporal constraints2. This 
operation, which we wi l l call token retrieval, is the tem­
poral analog of fetching assertions in the data base that 
match a given pattern. Token retrieval requires the sys­
tem to search through the data base for time tokens whose 
type matches a given pattern and whose associated inter­
val spans a specified reference interval. To support back­
ward chaining efficiently, token retrieval should be demand 
driven: a call to the token retrieval routine should return 
one token (if possible) and a suspended procedure call (or 
continuation) which, if resumed, wi l l supply additional to­
kens by taking advantage of the effort expended in find­
ing previous tokens. To maintain integrity, all operations 
on the data base, including token retrieval, should supply 
succinct descriptions of the reasons why they are to be be­
lieved. This allows that all deductions performed by the 
system can be made contingent upon continued belief in 
the reasons supporting their component steps. 

The primary claim of this paper is that, in many com­
mon situations, temporal data bases can be organized so 
that the cost of token retrieval is comparable wi th assertion 
retrieval in static data bases. Restricting our attention to 
the problem of retrieving a single token of ground type3 P 
spanning the interval /: 

1. In situations in which the set of tokens can be part i­
tioned into temporally distinct periods (e.g., months, 
years, factory work shifts), the cost of token retrieval 
is proportional to the sum of: 

3 A temporal constraint is one that in some way restricts the order 
in which two points occur or the distance in time separating two 
points. 

3 A type P is ground just in case P contains no variables. 

(a) the number of periods separating the period 
Porigin containing the beginning of / and the first 
period Pdestination preceding the beginning of I 
containing a token of type P, and 

(b) the cost of determining if any token of type P in 
Pdestination Spans I. 

2. In situations in which the data base can be orga­
nized according to hierarchies of constraints (e.g., con­
straints between a task and its sub tasks), and these 
constraints are metric and reasonably t ight4 , then the 
cost of determining if any token of type P in a given 
period spans / i s proportional to the number of tokens 
of type P w i th in that period. 

As w i th any scheme for speeding up retrieval, there is 
a cost associated w i th organizing the data to support these 
fast retrieval routines. Fortunately, much of the work re­
quired for organizing t ime tokens is already being handled 
by other routines in the time map. Whenever a new con­
straint is added or removed, the system has to determine 
how the changes affect the current set of beliefs. This is the 
basic function of temporal reason maintenance, and it is es­
sential for almost any interesting application of temporal 
reasoning [4]. The process of detecting changes in the set 
of beliefs is performed by propagating constraints through 
the constraint network. Essentially the system tries to 
compute new estimates (tighter bounds) on the distance in 
time separating selected pairs of points in the time map. 
These new estimates, referred to as derived constraints, can 
be used to either license new deductions or undermine old 
ones. The (derivation) complexity of a derived constraint 
is proportional to the length of the shortest path through 
the constraint network from which the associated distance 
estimate can be computed. If we assume that there is some 
bound, call it maxderivedlength, on the complexity of de­
rived constraints necessary to catch all crucial changes in 
the set of beliefs, then we can perform constraint prop­
agation in 0(m3

pt log m p t ) , where pt is one of the points 
being constrained and mpt is the number of points reach-
able from pt by paths of length < maxderivedlength. In 
practice, mpt is generally quite reasonable. 

The organizational schemes described in this paper 
are integral w i th the basic functionality of the TMM; they 
instigate reorganization correctly in response to the addi­
t ion of new information or the deletion of old, and they 
serve to expedite the basic operations used in temporal 
reason maintenance. The techniques involve methods for 
part i t ioning the set of t ime tokens both temporally and 
syntactically and for caching selected derived constraints 
and noticing when certain distance estimates become l i ­
censed by the current set of constraints or cease to be 
so. If we accept that the basic operation of temporal rea­
son maintenance is essential, then the additional overhead 
in t ime and space necessary to implement these organiza-

4 In the framework being considered here, the distance between 
two points is represented by an upper and lower bound. By tight we 
simply mean that the difference between these bounds is small. 
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t ional techniques is just a small constant factor times the 
number of tokens stored in the data base. 

Complexity measures are generally misleading indi­
cators of expected performance. The basic problem of 
representing temporal information using linear constraints 
has been studied by a number of researchers [7] [4] [11] 
[3]; most of the proposed techniques involve some sort of 
fairly straightforward polynomial-time algorithm. Unfor­
tunately, even n3 is out of the question for large n, where 
n corresponds to the total number of points or intervals 
being considered, and our experience [10] indicates that 
n wi l l typically be on the order of several thousand. As 
soon as you add disjunction, the problem becomes NP-
complete [13], but , again, asymptotic complexity doesn't 
tell the whole story. In the absence of a thorough analysis 
of the sorts of inference supported by a temporal reason­
ing system, evaluating such a system is impossible. In [4], 
we provide a detailed account of the inferential capabili­
ties of the TMM, including special purpose techniques for 
handling disjunctions, default rules, and both antecedent 
and consequent reasoning. In this paper, we are primari ly 
interested in the techniques required to expedite retrieval 
in large temporal data bases. We take as given that token 
retrieval cannot be a function of the size of the entire data 
base. 

I I I . Temporal Data Base Management 
The TMM consists of: 

1. A data base (called a time map) that captures what 
is known about events and their effects over time. In 
particular, t ime maps are used to record information 
about the t ru th of propositions that change over time. 

2. A query language that enables application programs 
to construct and explore hypothetical situations. This 
language supports simple queries of the form, "Is P 
true at time r?", as well as more complicated queries of 
the form, "F ind an interval satisfying some ini t ia l con­
straints such that the conjunction (and P1 . . . P „ ) is 
true throughout that interval." 

3. A set of techniques for extending the information in 
the data base. These techniques allow for predictions 
on the basis of temporal antecedent conditions. Pre­
dictions added to the data base in this way are made 
to depend upon the antecedent conditions in a mean­
ingful way. 

4. A mechanism for monitoring the continued validity 
of conditional predictions. This mechanism extends 
the functionality of reason maintenance systems [6] to 
temporal domains. 

A t ime map is a graph. Its vertices refer to points 
(or instants) of t ime corresponding to the beginning and 
ending of events. One point is related to another using 
constraints where a constraint is represented as a directed 
edge l inking two points. Each edge is labeled wi th an upper 
and lower bound on the distance separating the two points 

in time. These bounds allow us to represent incomplete in­
formation concerning the duration and time of occurrence 
of events (e.g., unloading the truck wi l l take between 20 
and 25 minutes). Any two points can be related by finding 
a path from one point to the other, where a path from pt0 

to ptn is just a sequence ptoclpt1 . . . cnpin such that pto 
through ptn are points and c, is a constraint relating pt-\ 
to pti. New constraints are added to the time map by 
making assertions of the form ( e l t (d is tance pt\ pt2) 
low high) where this is meant to indicate that the quan­
t i ty corresponding to (d is tance pt\ pi2) is an element of 
( • I t ) the closed interval low to high. 

An interval is just a pair of points. A type is denoted 
by a formula like ( l o c a t i o n obj 73 l o c l 4 ) or (move 
obj73 l o c l 4 l o c l 7 ) . A time token (or simply token in 
situations where it should cause no confusion) is an in­
terval together wi th a type, (begin tok) and (end tok) 
denote the begin and end points the time token tok. Pred­
ications of the form (occurs type token-name) are used 
to create new time tokens and refer to existing time tokens 
of a given type. The token-name gives us a handle so we 
can speak about the interval associated wi th a particular 
time token. 

IV . Indexing Time Tokens 
In this section, we wi l l be concerned primari ly w i th strate­
gies for discriminating on data in order to expedite re-
trieval. A discrimination corresponds to a question (or 
deduction) concerning the form or content of the data. 
On the basis of the answer to such a question, the data 
is usually partit ioned into disjoint sets so that if a pro-
gram attempts to retrieve an item whose content depends 
on the answer to this question, then the system wi l l know 
exactly where to look. This process of discriminating on 
data, asking questions and then part i t ioning according to 
the answer, can be thought of as caching the results of 
deductions that are likely to be frequently needed. To be 
useful, discriminations should substantially reduce search 
wi th a min imum overhead. Not all discriminations can be 
depended upon to remain valid as the data changes over 
time. Where the data is subject to change, there is an 
additional expense involved in keeping track of valid de­
ductions. 

The information content of a time token corresponds 
to the syntactic form of the token's type and the temporal 
extent (or scope) of the associated interval of t ime. De­
ductions corresponding to syntactic discriminations on the 
type of t ime tokens are never invalidated (though their 
ut i l i ty may be undermined as tokens are removed from the 
database). A l l t ime tokens are indexed through what is 
called a discrimination tree or dtree [2]. Each nonterminal 
node in a dtree corresponds to a discrimination: a question 
whose answer determines which subtree various data items 
are stored in . Each terminal node in a dtree corresponds 
to a set (or bucket) of data items determined by the dis­
criminations on the path leading from the root of the dtree 
to the terminal node. 
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D i s c r i m i n a t i o n i s d e m a n d based in the TMM. I f the 
size of a bucke t exceeds some f ixed th resho ld , the TMM w i l l 
a t t e m p t to subd iv ide the bucket by add ing an add i t i ona l 
d i s c r i m i n a t i o n node and some number o f t e r m i n a l nodes 
as d i c t a t e d by the chosen p a r t i t i o n i n g scheme. I f i t is pos­
s ib le, p a r t i t i o n i n g a bucket of tokens is based u p o n a syn­
tac t i c d i s c r i m i n a t i o n accord ing to the types o f the tokens 
s to red in the bucket . I f f u r t he r syntact ic d i s c r i m i n a t i o n is 
e i ther imposs ib le or undes i rab le , the system a t t emp ts to 
d i s c r i m i n a t e on the basis of the t empo ra l scope of tokens. 
T e m p o r a l d i s c r i m i n a t i o n in the TMM involves choosing a 
t e m p o r a l p a r t i t i o n i n g scheme and s u b d i v i d i n g the over ly 
large bucket o f tokens accord ing to th is scheme. In the 
T M M , the app l i ca t i on p r o g r a m is requ i red to supp ly a set 
o f h ie ra rch ica l l y a r ranged t e m p o r a l pa r t i t i ons of a t i m e l ine 
( i .e . , the real numbers ) such t ha t a l l o f the pa r t i t i ons can 
be re la ted v i a a single g loba l f rame of reference ( i .e. , 0) . 
A t t e m p t s to derive an adequate p a r t i t i o n i n g scheme solely 
on the basis of the cur ren t contents of a bucket have proven 
d i f f i cu l t [9]. T h e p a r t i t i o n i n g scheme chosen mus t essen­
t i a l l y an t i c i pa te the sort o f quest ions t ha t w i l l f requent ly 
be asked d u r i n g token re t r ieva l . In the fac to ry d o m a i n , 
the p a r t i t i o n s supp l ied by the FOHBIN p lanner [10] corre-
spond to weeks, days, e igh t -hour wo rk shi f ts , and one-hour 
in te rva ls . T h e system d iscr iminates as demand d ic ta tes, 
s t a r t i n g w i t h the coarsest pa r t i t i ons and re f in ing on ly as 
requ i red . 

T h e p a r t i t i o n i n g scheme descr ibed above corresponds 
to a set of successively f iner pa r t i t i ons of t i m e w i t h re­
spect to a single clock. T h i s is enormous ly useful as a 
coarse g ra ined f i l te r . Un fo r t una te l y , m a n y events cannot 
be t i ed to a precise t i m e , t h o u g h they can be re la ted pre­
cisely to one another . For instance, in reasoning abou t 
a chemica l process, you m a y not know exact ly when a 
ca ta lys t was added to a reactor vessel, b u t you do know 
t h a t w i t h i n 8 to 10 m inu tes fo l l ow ing the a d d i t i o n o f the 
ca ta lys t the reac t ion was comple te . T h e TMM prov ides 
a mechan i sm fo r spec i fy ing hierarchies of event re la t ions 
t h a t can serve to gu ide search in d e t e r m i n i n g t e m p o r a l or-
der ings a m o n g po in ts t h a t are no t precisely k n o w n w i t h 
respect to t he g loba l f r ame o f reference o f the p a r t i t i o n i n g 
scheme. T h e mos t c o m m o n s t ra tegy involves the use o f the 
even t / subeven t h ierarchy. If e1 is specif ied as a subevent 
o f e 2 , t h e n the TMM can guarantee ( w i t h i n cer ta in l i m i t a ­
t i ons ) t h a t there exists an edge in the t ime m a p connect ing 
t he b e g i n n i n g o f e 1 a n d the beg inn ing o f e 2 labeled w i t h 
t h e best b o u n d s on the d is tance i n t i m e separa t ing the t w o 
po in t s . 

These edges cons t i t u te cached deduct ions a n d are h a n ­
d led by t h e same mechanisms used in [4] to ensure correct 
behav io r w i t h regard t o the a d d i t i o n and remova l o f i n ­
f o r m a t i o n . T h e token re t r ieva l mach ine ry takes advantage 
of these cached deduc t ions to speed search in d e t e r m i n i n g 
the re la t i ve o r d e r i n g o f tokens w h i c h are no t d is t ingu ished 
i n t he d t ree by t e m p o r a l d i sc r im ina t i ons . These comb ined 
search ing a n d cach ing techniques guarantee t ha t under cer­

tain conditions5 the machinery for determining the bounds 
on the distance between two points wi l l always return the 
best bounds and wi l l do so in time proportional to the 
depth of the hierarchy. It is also possible to show that 
the system never reports false bounds and that the behav­
ior of the system degrades gracefully as the information 
becomes less precise and the maxderivedlength increases 
beyond the fixed threshold. For most problems the depth 
of the hierarchy is seldom greater than 20 and the alterna­
tive exhaustive search would cost on the order of n3 where 
n is the total number of tokens in the part i t ion (often on 
the order of several hundred). 

Token retrieval routines use the dtree to provide a set 
of candidate tokens and then determine the relative or­
dering of the beginning of these tokens using the search 
methods described in the previous paragraph. Determin­
ing the duration of a fact token relative to a reference inter­
val is also accomplished using search methods that exploit 
the hierarchical partit ions and cached distance estimates. 
Al l the search routines return the information requisite 
for setting up appropriate data dependencies. Searches 
corresponding to different token retrieval requests can be 
coroutined to support efficient backtracking during back­
ward chaining. 

V. A lgo r i t hm ic Detai ls 
The TMM employs a heuristic graph traversal routine to 
compute bounds on the distance separating pairs of points 
in the time map. These bounds are used to determine re­
lations between pairs of points and intervals. Estimates 
of the distance between pairs of points are computed by 
finding paths through the network of constraints. Re­
call that a path in the time map is a sequence of points 
and directed edges corresponding to constraints. Each 
edge c is labeled wi th an upper and lower bound, de­
noted Low(c) and HIGH(c) respectively. For each path 

we have BOUNDS(p) = (low, high) 
where low = H IGH(C, ) . In 

computing the best bounds, the heuristic graph traverser 
tries to find the paths wi th the greatest lower and least 
upper bounds. The details of the TMM's graph traverser 
are described in [4], and won't be repeated here. For a 
discussion and analysis of existing constraint propagation 
techniques for applications in artificial intelligence see [3]. 

In addition to asserting constraints between pairs of 
points corresponding to the begin and end of time tokens, 
it is also possible to constrain the begin or end of a time 
token wi th respect to the global frame of reference (men­
tioned in the previous section). Figure 1 shows a time map 
and the time line corresponding to a fixed global frame of 
reference; five tokens (notated I and their corre-
sponding beginning points (pt\ . . . pt3) are labeled for easy 
reference. Constraints are depicted as curved lines (e.g., 
those labeled The points in the shaded area 

5 The set of tokens must be totally ordered and the 
maxderivedlength (see Section II.) must be fixed. 
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Figure 1: Time map wi th privileged frame of reference 

(e.g., pt2) can be related to points outside the 
shaded area (e.g., pt1 or pr4) only through the constraints 
C\ and C2 and the point in time corresponding to the frame 
of reference of the global time line. Given that one or both 
of T2 and T3 are of type P, paths through the global frame 
of reference wi l l be important in determining if P is true 
throughout the interval associated wi th 71. For relating 
pairs of points isolated in the same cluster of tokens (e.g., 
pt1 and pt3), the global frame of reference may not help 
in establishing the necessary distance estimate, but, as we 
wi l l see, the global frame of reference provides an invalu­
able service by allowing the search routines to ignore large 
portions of the time map. 

In order to expedite token retrieval, the TMM pre-
computes and stores (i.e., caches) certain point-to-point 
distance estimates. Caching is performed as part of the 
constraint propagation routines used to implement tern 
poral reason maintenance. The TMM can maintain an es­
t imate, guaranteed exact under certain assumptions (see 
[4]), of the distance in time separating selected pairs of 
points. Obviously, it would be wasteful to cache distance 
estimates for all pairs of points. Selective caching, on the 
other hand, can provide real benefits. In Section V I . , we 
wi l l see how caching estimates of the distance between each 
point and the global frame of reference forms the basis for 
an effective temporal discrimination scheme. In [5], we 
demonstrate how a strategy for caching distance estimates 
between points corresponding to related tokens can expe­
dite search wi th in portions of the time map that are not 
highly constrained wi th respect to the global frame of ref­
erence. 

V I . H ierarch ica l Pa r t i t i on ing Schemes 

Figure 2: Portion of a strict hierarchical time-line part i t ion 

be more restrictive than wi th respect to / just in case 
and there is a subset S of p, such that 

and 5 partit ions J. A hierarchical part i t ioning scheme is 
strict if it is the case that for any i such that if 

is more restrictive than p, wi th respect 
to /. A l l the part i t ioning schemes we wi l l be looking at in 
this paper are strict. 

A time-line partition is just a part i t ion of R such that 
0 is identified wi th a particular frame of reference (e.g., 
midnight on Apr i l 30, 1777) and each real number x corre-
sponds to an offset in time from this global frame of refer­
ence as measured by a particular clock. The global frame 
of reference simplifies internal bookkeeping and provides 
a basis for using dates in specifying constraints. Figure 
2 shows part of a strict hierarchical time-line part i t ion in 
which the partit ions consist of weeks, shifts (eight hour pe­
riods), half-shifts (four hour periods), and one hour periods 
offset from a fixed zero point. In Figure 2, C is contained 
in A and B, and is partit ioned by {D,E,F,G}. 

Specifying constraints wi th respect to the global frame 
of reference is made particularly easy using dates. A 
date is just an offset from the global frame of refer­
ence specified in terms of the current part i t ioning scheme. 
For instance, in the scheme mentioned in the previ­
ous paragraph, the date ((veeks 2) (days 3) ( s h i f t s 
2) (hours 1) (minutes 15) )6 is easily converted into an 
offset in minutes from the current global frame of refer­
ence. Often, it is convenient to specify a default date 
(e.g., noon today) and then specify offsets, called rel-
dates, relative to the default. Dates and reldates can 
appear anywhere in a formula that a point can. As 
an example, if the default date is noon today, assert­
ing ( e i t ( d i s t i n c t (begin task41) ( r e l d a t e (hours 
2) (minutes 3 0 ) ) ) -10 10) determines that task41 be­
gins between 2:20 and 2:40 this afternoon. The TMM em­
ploys simple rewrite rules to translate between various in­
ternally used part i t ioning schemes and computationally 
cumbersome (but familiar) methods of dating based upon 
the modern calendar. 

Every point is identified wi th a tuple (low,high), 
called its relative offset, indicating the best (lower and 

0 Partition divisions not mentioned in a date default to 0. 
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upper) bounds over all paths through the network of con­
straints on the distance in time separating the point from 
the global frame of reference. Relative offsets are updated 
during constraint propagation. The constraint propaga­
tion routines ensure that, if additions or deletions to the 
set of constraints require that the relative offset of a point 
be updated (i.e., the bounds made either more or less re­
strictive), then the system can easily detect this and re­
spond appropriately. The relative offset determines how 
tokens are indexed in the TMM discrimination tree. To sim­
plify the discussion of temporal indexing, we wil l assume 
that all tokens are syntactically indexed down to atoms 
according to type, and consider only those nodes in the 
discrimination tree corresponding to temporal indices. A 
temporal index is implemented as a data structure called 
a TBUCKET consisting of a set (possibly empty) of tokens 
that can't be further discriminated upon, a partit ion inter­
val [a,b), and a set of subindices (i.e., TBUCKETs) sorted by 
their associated part i t ion intervals. For efficiency reasons, 
subindexing is usually postponed unti l the set of tokens 
stored at an index exceeds some fixed threshold. Figure 
3, shows a simple hierarchical partit ioning scheme and a 
table indicating the relative offsets for five tokens of the 
same type. Figure 4 shows a portion of a discrimination 
tree. (Recall that is the singleton set corresponding 
to the entire t ime line.) Note that could be further 
discriminated, but is not in this case since the TBUCKET 
containing it would otherwise be empty. If the relative off­
set of the beginning of was changed from to 
(1.2,1.8), then T2 would be further discriminated ending 

Figure 5: Search in hierarchical partitions 

up in the same bucket wi th T3. If, on the other hand, the 
relative offset was changed to (1.2,3.5) or (1.2, +oo), then 
T2 would end up (respectively) in the same bucket wi th T1 

or in the top-most index corresponding to po . 
Now, it is straightforward to describe the algorithm 

used in the TMM for token fetching during temporal back­
ward chaining. The algorithm makes use of two sorts of 
indexing in performing the requisite search: direct-path 
indexing and indexing relative to the global frame of ref­
erence. The steps in the algorithm are: 

1. Determine a part i t ion V and an interval I belong­
ing to V such that the fetch interval is constrained to 
(necessarily) begin during I and cannot be shown to 
(necessarily) begin during any interval belonging to a 
part i t ion more restrictive than V. 

2. Using the heuristic graph searching routines, t ry each 
matching token whose associated part i t ion interval ei­
ther is contained in I or contains J. In Figure 5, 
the shaded areas correspond to the part i t ion intervals 
searched during this step. If a token is found that 
either begins before or can be constrained to begin 
before the fetch interval, then an attempt is made to 
determine whether or not that token persists through­
out the fetch interval. Relative offsets and the heuris­
tic search routines are used to determine the relative 
ordering of the end point of the found token and the 
end point of the fetch interval. 

3. If the previous step fails to f ind an appropriate token 
or set of tokens then we search through the remaining 
tokens of the desired type as follows: 

(a) Set the variable early-termination to false. 
(b) Determine a part i t ion interval, call it N, preced­

ing I such that there is no other unexamined par­
t i t ion interval preceding / which is either later 
than N or in a less restrictive part i t ion. 

(c) For each matching token in AT, use the relative 
offset from the global frame of reference to deter­
mine if the token persists long enough. 

(d) Mark N as examined. 

(e) If a matching token is found that fails to persist 
throughout the fetch interval because it has been 
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clipped by a contradictory token, then set early-
termination to true, 

( f ) If early-termination is true and N is an element 
of the most restrictive part i t ion, then stop, oth­
erwise return to step 3b. 

Figure 5 illustrates the order in which part i t ion inter­
vals are examined during step 3 of the fetch. The starred 
part i t ion interval is meant to indicate where the variable 
early-termination was set to true. 

The above indexing scheme relies heavily upon their 
being a single global frame of reference and a rather simple 
and restrictive hierarchy of partit ions. The fact that the 
partit ions are strictly nested (i.e., for each 
then there is a set of intervals in P,+j that partit ions I) 
can result in certain inefficiencies at the boundaries of par­
t i t ion intervals. Points that are slightly unordered w i th 
respect to a major t ime break wi l l be assigned a fair ly 
unrestrictive part i t ion interval even though their relative 
offset is known w i th considerable precision. For instance, 
an event constrained to begin at midnight January 1 give 
or take a minute wi l l end up in the bucket corresponding 
to the decade part i t ion, assuming a part i t ion according 
to decades, years, months, weeks, days, and hours. Such 
events cause the system to do a bi t more work, but since 
they are relatively rare, the overall effect is negligible. To­
kens whose begin points are known wi th some precision 
(i.e., the difference between the lower and upper bound 
of the relative offset is small), but which, nevertheless, are 
unordered wi th respect to major time breaks might be han­
dled by considering pairs of part i t ion intervals adjacent to 
the t ime break and indexing the token in more than one 
interval, but no attempt has been made to implement such 
a strategy in the current system. Similarly, the beginning 
of fetch intervals can also span major t ime breaks and for 
this reason it is often useful to split the fetch and perform 
the requisite search on a case-by-case basis. 

V I I . Related Work 
The techniques described in this paper have profited from 
many sources. [9] describes a discrimination network ca­
pable of indexing spatial objects on the basis of metric 
information. Methods for organizing intervals hierarchi­
cally have appeared quite frequently in the literature [1] 
[7]. There have also been a number of strategies suggested 
for guiding search in reasoning about t ime [12] [11]. A 
careful reading of the discussion of constraint propagation 
techniques in [3] convinced us that, while the general prob­
lem of reasoning in large constraint networks is hopeless, 
in most practical situations involving t ime, the requisite 
search can be directed wi th amazing precision. 

V I I I . Conclusion 
The TMM provides a wide range of functionality (backward 
and forward temporal inference, dependency directed de­
fault reasoning, temporal reason maintenance) in a simple-
to-use system (predicate-calculus syntax and PROLOG com-

pat ibi l i ty) in which routine temporal reasoning is opt i­
mized using sophisticated caching and search techniques 
to speed inference. Straightforward part i t ioning schemes 
supplied by an application program are used to fragment 
a temporal data base into non-overlapping periods. Under 
situations that arise frequently in everyday reasoning, to­
ken retrieval, the basic operation common to most forms of 
temporal inference, can be performed in time proportional 
to the sum of (a) the number of periods separating the 
period containing the beginning of the reference interval 
and the first previous period that contains a token of the 
desired type, and (b) the number of tokens of that type 
beginning in that previous period. The result is that the 
performance of the temporal inference engine corresponds 
roughly to our expectations given the distr ibution of to­
kens of the underlying fact types being manipulated. The 
discussion of techniques in this paper is necessarily cursory. 
A technical report [5] provides additional detail concerning 
both the algorithms and their expected performance. 
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