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Abstract
In this paper we study the covering numbers of the space of convex and uniformly bounded func-
tions in multi-dimension. We find optimal upper and lower bounds for the ε-covering number
M(C([a, b]d, B), ε;L1) in terms of the relevant constants, where d ≥ 1, a < b ∈ R, B > 0, and
C([a, b]d, B) denotes the set of all convex functions on [a, b]d that are uniformly bounded byB. We
summarize previously known results on covering numbers for convex functions and also provide
alternate proofs of some known results. Our results have direct implications in the study of rates
of convergence of empirical minimization procedures as well as optimal convergence rates in the
numerous convexity constrained function estimation problems.
Keywords: convexity constrained function estimation, empirical risk minimization, Hausdorff dis-
tance, Kolmogorov entropy, L1 metric, metric entropy, packing numbers.

1. Introduction

Ever since the work of Kolmogorov and Tihomirov (1961), covering numbers (and their logarithms,
known as metric entropy numbers) have been studied extensively in a variety of disciplines. For
a subset F of a metric space (X , ρ), the ε-covering number M(F , ε; ρ) is defined as the smallest
number of balls of radius ε whose union contains F . Covering numbers capture the size of the
underlying metric space and play a central role in a number of areas in information theory and
statistics, including nonparametric function estimation, density estimation, empirical processes and
machine learning.

In this paper we study the covering numbers of the space of convex and uniformly bounded
functions in multi-dimension. Specifically, we find optimal upper and lower bounds for the ε-
covering number M(C([a, b]d, B), ε;L1) in terms of the relevant constants, where d ≥ 1, a, b ∈ R,
B > 0, and C([a, b]d, B) denotes the set of all convex functions on [a, b]d that are uniformly bounded
byB. We also summarize previously known results on covering numbers for convex functions. The
special case of the problem when d = 1 has been recently addressed in Dryanov (2009). Prior
to Dryanov (2009), the only other result on the covering numbers of convex functions is due to
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Bronshtein (1976) (also see (Dudley, 1999, Chapter 8)) who considered convex functions that are
uniformly bounded and uniformly Lipschitz with a known Lipschitz constant.

In recent years there has been an upsurge of interest in nonparametric function estimation un-
der convexity based constraints, especially in multi-dimension. In general function estimation, it is
well-known (see e.g., Birgé (1983); Le Cam (1973); Yang and Barron (1999); Guntuboyina (2011b))
that the covering numbers of the underlying function space can be used to characterize optimal rates
of convergence. They are also useful for studying the rates of convergence of empirical minimiza-
tion procedures (see e.g., Van de Geer (2000); Birgé and Massart (1993)). Our results have direct
implications in this regard in the context of understanding the rates of convergence of the numerous
convexity constrained function estimators, e.g., the nonparametric least squares estimator of a con-
vex regression function studied in Seijo and Sen (2011); Hannah and Dunson (2011); the maximum
likelihood estimator of a log-concave density in multi-dimension studied in Seregin and Wellner
(2010); Cule et al. (2010); Dümbgen et al. (2011). Also, similar problems that crucially use con-
vexity/concavity constraints to estimate sets have also received recent attention in the statistical and
machine learning literature, see e.g., Guntuboyina (2011a); Gardner et al. (2006), and our results
can be applied in such settings.

The paper is organized as follows. In Section 2, we set up notation, describe the previous work
on covering numbers of convex functions and provide motivation for our main result, which is
proved in Section 3. We conclude in Section 4 with a brief summary of the paper and some open
questions that remain. The appendix contains the proof of an auxiliary result.

2. Motivation

The first result on covering numbers for convex functions was proved by Bronshtein (1976), who
considered convex functions defined on a cube in Rd that are uniformly bounded and uniformly
Lipschitz. Specifically, let C([a, b]d, B, L) denote the class of real-valued convex functions defined
on [a, b]d that are uniformly bounded in absolute value by B and uniformly Lipschitz with constant
L. In Theorem 6 of Bronshtein (1976), he proved that for ε sufficiently small, the logarithm of
M(C([a, b]d, B, L), ε;L∞) can be bounded from above and below by a positive constant (not de-
pending on ε) multiple of ε−d/2. Note that the L∞ distance between two functions f and g on [a, b]d

is defined as ||f − g||∞ := supx∈[a,b]d |f(x)− g(x)|.
Bronshtein’s proof of the upper bound on M(C([a, b]d, B, L), ε;L∞) is based on the following

result on covering numbers of convex sets proved in the same paper. For Γ > 0, letKd+1(Γ) denote
the set of all compact, convex subsets of the ball in Rd+1 of radius Γ centered at the origin. In
Theorem 3 (and Remark 1) of Bronshtein (1976), he proved that there exist positive constants c and
ε0 depending only on d such that

logM(Kd+1(Γ), ε; `H) ≤ c
(

Γ

ε

)d/2
for ε ≤ Γε0, (1)

where `H denotes the Hausdorff distance defined by

`H(B,C) := max

(
sup
x∈B

inf
y∈C
|x− y|, sup

x∈C
inf
y∈B
|x− y|

)
for B,C ∈ Kd+1(Γ).

A more detailed account of Bronshtein’s proof of (1) can be found in Section 8.4 of Dudley (1999).

12.2



L1 COVERING NUMBERS FOR UNIFORMLY BOUNDED CONVEX FUNCTIONS

Bronshtein proved the upper bound on M(C([a, b]d, B, L), ε;L∞) by relating the L∞ distance
between two functions in C([a, b]d, B, L) to the Hausdorff distance between their epigraphs, which
allowed him to use (1). However, he did not state the dependence of the upper bound on the con-
stants a, b, B and L. We state Bronshtein’s upper bound result below showing the explicit depen-
dence on the constants a, b, B and L. The proof of the result can be found in the Appendix.

Theorem 1 There exist positive constants c and ε0, depending only on the dimension d, such that,
for every B,L > 0 and b > a, we have, for every ε ≤ ε0(B + L(b− a)),

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(
ε

B + L(b− a)

)−d/2
.

Note that Bronshtein worked with the class C([a, b]d, B, L) where the functions are uniformly
Lipschitz. However, in convexity-based function estimation problems, one usually does not have
a known uniform Lipschitz bound on the unknown function class. This leads to difficulties in the
analysis of empirical minimization procedures via Bronshtein’s result. To the best of our knowledge,
there does not exist any other result on the covering numbers of convex functions that deals with all
d ≥ 1 and does not require the Lipschitz constraint.

In the absence of the uniformly Lipschitz constraint (i.e., if one works with the class C([a, b]d, B)
instead of C([a, b]d, B, L)), the covering numbers under the L∞ metric are infinite. In other words,
the space C([a, b]d, B) is not totally bounded under the L∞ metric. This can be seen, for example,
by noting that the functions

fj(t) := max
(
0, 1− 2jt

)
, for t ∈ [0, 1],

are in C([0, 1], 1), for all j ≥ 1, and satisfy

||fj − fk||∞ ≥ |fj(2−k)− fk(2−k)| = 1− 2j−k ≥ 1/2,

for all j < k.
This motivated us to study the covering numbers of the class C([a, b]d, B) under a different

metric, namely theL1 metric. We recall that under theL1 metric, the distance between two functions
f and g on [a, b]d is defined as

||f − g||1 :=

∫
x∈[a,b]d

|f(x)− g(x)|dx.

Our main result in this paper shows that if one works with the L1 metric as opposed to L∞, then the
covering numbers of C([a, b]d, B) are finite. Moreover, their logarithms are bounded from above
and below by constant multiples of ε−d/2 for sufficiently small ε.

The special case of our main result for d = 1 has been recently established by Dryanov (2009)
who actually proved it for every Lp metric with 1 ≤ p < ∞. Dryanov’s proof of the upper bound
for M(C([a, b], B), ε;Lp) is based on the application of Bronshtein’s bound for covering numbers
of C([c, d], B, L) for suitable subintervals [c, d] ⊂ (a, b) and for suitable values of L. Unfortunately,
his selection of these subintervals is rather complicated. In contrast, our proofs for both the upper
and lower bounds work for all d ≥ 1 and are much simpler than Dryanov’s. The disadvantage with
our approach, however, is that our proof of the upper bound result only works for the L1 metric and
does not generalize to the Lp metric, 1 < p <∞. Our lower bound argument, on the other hand, is
valid for all 1 ≤ p <∞.
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3. L1 - covering number bounds for C([a, b]d, B)

In this section, we prove upper and lower bounds for the ε-covering number of C([a, b]d, B) under
the L1 metric. Let us start by noting a simple scaling identity that allows us to take a = 0, b = 1
and B = 1 without loss of generality. For each f ∈ C([a, b]d, B), let us define f̃ on [0, 1]d by
f̃(x) := f(a1 + (b − a)x)/B, where 1 = (1, . . . , 1) ∈ Rd. Clearly f̃ ∈ C([0, 1]d, 1) and, for
1 ≤ p <∞,

Bp

∫
x∈[0,1]d

∣∣∣f̃(x)− g(x)
∣∣∣p dx = (b− a)−d

∫
y∈[a,b]d

∣∣∣∣f(y)−Bg
(
y − a1
b− a

)∣∣∣∣p dy.
It follows that covering f to within ε in the Lp metric on [a, b]d is equivalent to covering f̃ to within
(b− a)−d/pε/B in the Lp metric on [0, 1]d. Therefore, for 1 ≤ p <∞,

M(C([a, b]d, B), ε;Lp) = M(C([0, 1]d, 1), (b− a)−d/pε/B,Lp). (2)

3.1. Upper Bound for M(C([a, b]d, B), ε;L1)

Theorem 2 There exist positive constants c and ε0, depending only on the dimension d, such that,
for every B > 0 and b > a, we have,

logM
(
C([a, b]d, B), ε;L1

)
≤ c

(
ε

B(b− a)d

)−d/2
,

for every ε ≤ ε0B(b− a)d.

Proof [Proof of Theorem 2] The scaling identity (2) lets us take a = 0, b = 1 and B = 1. For
f ∈ C([0, 1]d, 1), we define its (bounded) epigraph Vf ⊆ Rd+1 to be the compact, convex set
defined by

Vf =
{

(x1, . . . , xd, xd+1) : (x1, . . . , xd) ∈ [0, 1]d and f(x1, . . . , xd) ≤ xd+1 ≤ 1
}
. (3)

For every (x1, . . . , xd+1) ∈ Vf , we clearly have x21 + · · · + x2d+1 ≤ d + 1. As a result, Vf ∈
Kd+1(

√
d+ 1).

In the following lemma, we relate theL1 distance between the functions f and g to the Hausdorff
distance between Vf and Vg. The proof of the lemma is provided at the end of this proof.

Lemma 3 For every pair of functions f and g in C([0, 1]d, 1), we have

||f − g||1 ≤ (1 + 20d)`H(Vf , Vg), (4)

where Vf and Vg are defined as in (3).

Inequality (4), along with a simple relationship between covering numbers and packing num-
bers, see e.g., Theorem 1.2.1 of Dudley (1999), implies that

M
(
C([0, 1]d, 1), ε;L1

)
≤M

(
Kd+1(

√
d+ 1),

ε

2(1 + 20d)
; `H

)
.
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Thus from (1), we deduce the existence of two positive constants c and ε0, depending only on d,
such that

logM
(
C([0, 1]d, 1), ε;L1

)
≤ cε−d/2 whenever ε ≤ ε0,

which completes the proof of the theorem.

Proof [Proof of Lemma 3] For f ∈ C([0, 1]d, 1) and x ∈ (0, 1)d, let mf (x) denote any subgradient
of the convex function f at x. Fix two functions f and g in C([0, 1]d, 1) with `H(Vf , Vg) = ρ > 0.
Our first step is to observe that

|f(x)− g(x)| ≤ ρ (1 + ||mf (x)||+ ||mg(x)||) for every x ∈ (0, 1)d, (5)

where ||mf (x)|| denotes the Euclidean norm of the subgradient vector mf (x) ∈ Rd. To see this, fix
x ∈ (0, 1)d with f(x) 6= g(x). We assume, without loss of generality, that f(x) < g(x). Clearly
(x, f(x)) ∈ Vf and because `H(Vf , Vg) = ρ, there exists (x′, y′) ∈ Vg with ||(x, f(x))−(x′, y′)|| ≤
ρ. Since f(x) < g(x), the point (x, f(x)) lies outside the convex set Vg and we can thus take
y′ = g(x′). By the definition of the subgradient, we have

g(x′) ≥ g(x) +
〈
mg(x), x′ − x

〉
.

Therefore,

0 ≤ g(x)− f(x) = g(x)− g(x′) + g(x′)− f(x)

≤
〈
mg(x), x− x′

〉
+ |g(x′)− f(x)|

≤ ||mg(x)||||x− x′||+ |g(x′)− f(x)|

≤
√
||mg(x)||2 + 1||(x, f(x))− (x′, y′)||

≤ ρ
√
||mg(x)||2 + 1 ≤ ρ(1 + ||mg(x)||).

Note that the Cauchy-Schwarz inequality has been used twice in the above chain of inequalities. We
have thus shown that g(x) − f(x) ≤ ρ(1 + ||mg(x)||) in the case when f(x) < g(x). One would
have a similar inequality in the case when f(x) > g(x). Combining these two, we obtain (5).

As a consequence of (5), we get

||f − g||1 =

∫
[0,1]d\[ρ,1−ρ]d

|f(x)− g(x)|dx+

∫
[ρ,1−ρ]d

|f(x)− g(x)|dx

≤ 2
(

1− (1− 2ρ)d
)

+ ρ

(
1 +

∫
[ρ,1−ρ]d

||mf (x)||dx+

∫
[ρ,1−ρ]d

||mg(x)||dx

)

≤ ρ

(
1 + 4d+

∫
[ρ,1−ρ]d

||mf (x)||dx+

∫
[ρ,1−ρ]d

||mg(x)||dx

)
,

where we have used the inequality (1− 2ρ)d ≥ 1− 2dρ.
To complete the proof of (4), we show that

∫
[ρ,1−ρ]d ||mf (x)||dx ≤ 8d for every f ∈ C([0, 1]d, 1).

We write mf (x) = (mf (x)(1), . . . ,mf (x)(d)) ∈ Rd and use the definition of the subgradient to
note that for every x ∈ [ρ, 1− ρ]d and 1 ≤ i ≤ d,

f(x+ tei)− f(x) ≥ t mf (x)(i) (6)
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for t > 0 sufficiently small, where ei is the unit vector in the ith coordinate direction i.e., ei(j) := 1
if i = j and 0 otherwise. Dividing both sides by t and letting t ↓ 0, we would get mf (x)(i) ≤
f ′(x; ei) (we use f ′(x; v) to denote the directional derivative of f in the direction v; directional
derivatives exist as f is convex). Using (6) for t < 0, we get mf (x)(i) ≥ −f ′(x;−ei). Combining
these two inequalities, we get

|mf (x)(i)| ≤ |f ′(x; ei)|+ |f ′(x;−ei)| for i = 1, . . . , d.

As a result,∫
[ρ,1−ρ]d

||mf (x)||dx ≤
d∑
i=1

∫
[ρ,1−ρ]d

|mf (x)(i)|dx

≤
d∑
i=1

(∫
[ρ,1−ρ]d

|f ′(x; ei)|dx+

∫
[ρ,1−ρ]d

|f ′(x;−ei)|dx

)
.

We now show that for each i, both the integrals
∫
[ρ,1−ρ]d |f

′(x; ei)| and
∫
[ρ,1−ρ]d |f

′(x;−ei)| are
bounded from above by 4. Assume, without loss of generality, that i = 1 and notice∫

[ρ,1−ρ]d
|f ′(x; e1)|dx ≤

∫
(x2,...,xd)∈[ρ,1−ρ]d−1

(∫ 1−ρ

ρ
|f ′(x; e1)|dx1

)
dx2 . . . dxd. (7)

We fix (x2, . . . , xd) ∈ [ρ, 1 − ρ]d−1 and focus on the inner integral. Let v(z) := f(z, x2, . . . , xd)
for z ∈ [0, 1]. Clearly v is a convex function on [0, 1] and its right derivative, v′r(x1) at the point z =
x1 ∈ (0, 1) equals f ′(x; e1) where x = (x1, . . . , xd). The inner integral thus equals

∫ 1−ρ
ρ |v′r(z)|dz.

Because of the convexity of v, its right derivative v′r(z) is non-decreasing and satisfies

v(y2)− v(y1) =

∫ y2

y1

v′r(z)dz for 0 < y1 < y2 < 1.

Consequently, ∫ 1−ρ

ρ
|v′r(z)|dz ≤ sup

ρ≤c≤1−ρ

(
−
∫ c

ρ
v′r(z)dz +

∫ 1−ρ

c
v′r(z)dz

)
= sup

ρ≤c≤1−ρ
(v(ρ) + v(1− ρ)− 2v(c)) .

The function v(z) = f(z, x2, . . . , xd) clearly satisfies |v(z)| ≤ 1 because f ∈ C([0, 1]d, 1). This
implies that

∫ 1−ρ
ρ |v′r(z)|dz ≤ 4(1− 2ρ) ≤ 4. The inequality (7) therefore gives∫

[ρ,1−ρ]d
|f ′(x; e1)|dx ≤

∫
(x2,...,xd)∈[ρ,1−ρ]d−1

(∫ 1−ρ

ρ
|v′r(z)|dz

)
dx2 . . . dxd ≤ 4.

Similarly, by working with left derivatives as opposed to right, we can prove that∫
[ρ,1−ρ]d

|f ′(x;−e1)|dx ≤ 4.
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Therefore,∫
[ρ,1−ρ]d

||mf (x)||dx ≤
d∑
i=1

(∫
[ρ,1−ρ]d

|f ′(x; ei)|dx+

∫
[ρ,1−ρ]d

|f ′(x;−ei)|dx

)
≤ 8d,

thereby completing the proof of Lemma 3.

Remark 4 The proof of Theorem 2 is crucially based on Lemma 3 which bounds the L1 distance
between two functions in C([0, 1]d, 1) by a constant multiple of the Hausdorff distance between
their epigraphs. This is not true if L1 is replaced by Lp for p > 1. Indeed, if d = 1 and fα(x) :=
max(0, 1 − (x/α)) for 0 < α ≤ 1 and g(x) := 0 for all x ∈ [0, 1], then it can be easily checked
that for 1 ≤ p <∞,

||fα − g||p :=
α1/p

(1 + p)1/p
and `H(Vfα , Vg) :=

α√
1 + α2

.

As α can be arbitrarily close to zero, this clearly rules out any inequality of the form (4) with the
L1 metric replaced by Lp for 1 < p ≤ ∞. Therefore, our proof of Theorem 2 will break down for
the Lp metric with p > 1. However, Theorem 2 does indeed hold for all 1 ≤ p < ∞. The proof
requires different techniques and can be found in Guntuboyina and Sen (2012).

3.2. Lower bound for M(C([a, b]d, B), ε;L1)

Theorem 5 There exist positive constants c and ε0, depending only on the dimension d, such that
for every B > 0 and b > a, we have

logM
(
C([a, b]d, B), ε;L1

)
≥ c

(
ε

B(b− a)d

)−d/2
,

for ε ≤ ε0B(b− a)d.

Proof As before, by the scaling identity (2), we take a = 0, b = 1 and B = 1. We prove that
for ε sufficiently small, there exists an ε-packing subset of C([0, 1]d, 1) of log-cardinality larger than
a constant multiple of ε−d/2. By a packing subset of C([0, 1]d, 1), we mean a subset F satisfying
||f − g||1 ≥ ε whenever f, g ∈ F with f 6= g.

Fix 0 < η ≤ 4(2 +
√
d− 1)−2 and let k := k(η) be the positive integer satisfying

k ≤ 2η−1/2

2 +
√
d− 1

< k + 1 ≤ 2k. (8)

Consider the intervals I(i) = [u(i), v(i)] for i = 1, . . . , k, such that

1. 0 ≤ u(1) < v(1) ≤ u(2) < v(2) ≤ · · · ≤ u(k) < v(k) ≤ 1,

2. v(i)− u(i) =
√
η, for i = 1, . . . , k,

3. u(i+ 1)− v(i) = 1
2

√
η(d− 1) for i = 1, . . . , k − 1.

12.7



GUNTUBOYINA SEN

Let S denote the set of all d-dimensional cubes of the form I(i1)×· · ·×I(id) where i1, . . . , id ∈
{1, . . . , k}. The cardinality of S, denoted by |S|, is clearly kd.

For each S ∈ S with S = I(i1) × · · · × I(id) where I(ij) = [u(ij), v(ij)], let us define the
function hS : [0, 1]d → R as

hS(x) = hS(x1, . . . , xd) :=
1

d

d∑
j=1

[
u2(ij) + {v(ij) + u(ij)}{xj − u(ij)}

]
= f0(x) +

1

d

d∑
j=1

{xj − u(ij)}{v(ij)− xj}, (9)

where f0(x) := 1
d

(
x21 + · · ·+ x2d

)
, for x ∈ [0, 1]d. The functions hS , S ∈ S have the following

four key properties:

1. hS is affine and hence convex.

2. For every x ∈ [0, 1]d, we have hS(x) ≤ hS(1, . . . , 1) ≤ 1.

3. For every x ∈ S, we have hS(x) ≥ f0(x). This is because whenever x ∈ S, we have
u(ij) ≤ xj ≤ v(ij) for each j, which implies {xj − u(ij)}{v(ij)− xj} ≥ 0.

4. Let S, S′ ∈ S with S 6= S′. For every x ∈ S′, we have hS(x) ≤ f0(x). To see this, let
S′ = I(i′1) × · · · × I(i′d) with I(i′j) = [u(i′j), v(i′j)]. Let x ∈ S′ and fix 1 ≤ j ≤ d. If
I(ij) = I(i′j), then xj ∈ I(ij) = [u(ij), v(ij)] and hence

{xj − u(ij)}{v(ij)− xj} ≤
{v(ij)− u(ij)}2

4
=
η

4
.

If I(ij) 6= I(i′j) and u(i′j) < v(i′j) < u(ij) < v(ij), then

{xj − u(ij)}{v(ij)− xj} ≤ −{u(ij)− v(i′j)}2 ≤ −
d− 1

4
η.

The same above bound holds if u(ij) < v(ij) < u(i′j) < v(i′j). Because S 6= S′, at least one
of ij and i′j will be different. Consequently,

hS(x) = f0(x) +
∑
j

{xj − u(ij)}{v(ij)− xj}

≤ f0(x) +
∑
j:ij=i′j

η

4
−
∑
j:ij 6=i′j

(d− 1)
η

4
≤ f0(x).

Let {0, 1}S denote the collection of all {0, 1}-valued functions on S. The cardinality of {0, 1}S
clearly equals 2|S| (recall that |S| = kd).

For each θ ∈ {0, 1}S , let

gθ(x) := max

(
max

S∈S:θ(S)=1
hS(x), f0(x)

)
.
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The first two properties of hS , S ∈ S ensure that gθ ∈ C([0, 1]d, 1). The last two properties imply
that

gθ(x) = hS(x)θ(S) + f0(x)(1− θ(S)) for x ∈ S.

We now bound from below the L1 distance between gθ and gθ′ for θ, θ′ ∈ {0, 1}S . Because the
interiors of the cubes in S are all disjoint, we can write

||gθ − gθ′ ||1 ≥
∑
S∈S

∫
x∈S
|gθ(x)− gθ′(x)| dx =

∑
S∈S

{
θ(S) 6= θ′(S)

}∫
x∈S
|hS(x)− f0(x)|dx.

Note that from (9) and by symmetry, that the value of integral

ζ :=

∫
x∈S
|hS(x)− f0(x)|dx

is the same for all S ∈ S. We have thus shown that

||gθ − gθ′ ||1 ≥ ζΥ(θ, θ′) for all θ, θ′ ∈ {0, 1}S , (10)

where Υ(θ, θ′) :=
∑

S∈S {θ(S) 6= θ′(S)} denotes the Hamming distance.
The quantity ζ can be computed in the following way. Let S = I(i1) × · · · × I(id) where

I(ij) = [u(ij), v(ij)]. We write

ζ =

∫ v(i1)

u(i1)
. . .

∫ v(id)

u(id)

1

d

d∑
j=1

{xj − u(ij)}{v(ij)− xj}dxd . . . dx1.

By the change of variable yj = {xj − u(ij)}/{v(ij)− u(ij)} for j = 1, . . . , d, we get

ζ =

d∏
j=1

{v(ij)− u(ij)}
∫
[0,1]d

1

d

d∑
j=1

{v(ij)− u(ij)}2yj(1− yj)dy.

Recalling that v(i) − u(i) =
√
η for all i = 1, . . . , k, we get ζ = ηd/2η/6. Thus, from (10), we

deduce
||gθ − gθ′ ||1 ≥ ηd/2ηΥ(θ, θ′)/6 for all θ, θ′ ∈ {0, 1}S . (11)

We now use the Varshamov-Gilbert lemma (see e.g., Massart (2007, Lemma 4.7)) which asserts the
existence of a subset W of {0, 1}S with cardinality, |W | ≥ exp(|S|/8) such that Υ(τ, τ ′) ≥ |S|/4
for all τ, τ ′ ∈W with τ 6= τ ′. Thus, from (11) and (8), we get that for every τ, τ ′ ∈W with τ 6= τ ′,

||gθ − gθ′ ||1 ≥ ηd/2η
|S|
24

=
1

24
ηd/2ηkd ≥ c1η

where c1 := (2 +
√
d− 1)−d/24. Taking ε := c1η, we have obtained for ε ≤ ε0 := 4c1(2 +√

d− 1)−2, an ε-packing subset of C([0, 1]d, 1) of size M := |W | where

logM ≥ |S|
8

=
kd

8
≥ (2 +

√
d− 1)−d

8
η−d/2 =

c
d/2
1

8(2 +
√
d− 1)d

ε−d/2 = cε−d/2,

where c depends only on the dimension d. This completes the proof.
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Remark 6 The explicit packing subset constructed in the above proof consists of functions that
can be viewed as perturbations of the quadratic function f0. Previous lower bounds on the covering
numbers of convex functions in (Bronshtein, 1976, Proof of Theorem 6) and (Dryanov, 2009, Section
2) (for d = 1) are based on perturbations of a function whose graph is a subset of a sphere; a more
complicated convex function than f0. The perturbations of f0 in the above proof can also be used
to simplify the lower bound arguments in those papers.

Remark 7 For functions defined on [0, 1]d, the Lp metric, p > 1, is larger than L1. Thus, when
a = 0, b = 1, the conclusion of Theorem 5 also holds for the Lp metric with p > 1. The scaling
identity (2) then gives the following inequality for arbitrary a < b: There exist positive constants c
and ε0, depending only on the dimension d, such that for every p ≥ 1, B > 0 and b > a, we have

logM
(
C([a, b]d, B), ε;Lp

)
≥ c

(
ε

B(b− a)d/p

)−d/2
,

for ε ≤ ε0B(b− a)d/p.

4. Concluding remarks

In this paper we have studied the covering numbers of C([a, b]d, B), the class of all uniformly
bounded convex functions, defined on the hypercube [a, b]d, under the L1 metric, 1 ≤ p ≤ ∞. Our
main result shows that we can forgo the assumption of a uniform Lipschitz norm for the underlying
class of convex functions (as was assumed in Bronshtein (1976)) and still show that the logarithm
of the ε-covering number grows at the same order ε−d/2, under the L1 metric. Specifically, we
prove that the logarithm of the ε-covering number under the L1 metric is bounded from both above
and below by a constant multiple of ε−d/2. Our proof of the upper bound in Theorem 2 is based
on Lemma 3 which bounds the L1 distance between two convex functions by a constant multiple
of the Hausdorff distance between their epigraphs. Our proof of the lower bound in Theorem 5
is based on an explicit construction of a finite packing subset of the space of uniformly bounded
convex functions. In the Appendix, we provide a slightly improved proof of the known upper bound
result (Bronshtein, 1976, Theorem 6) for the class of all uniformly bounded (byB) convex functions
with a uniform Lipschitz norm L that explicitly shows the dependence of the covering numbers on
a, b, B, L.

After the submission of this paper, we managed to extend the results to the case of the Lp
metric, for all 1 ≤ p < ∞. These results, which required more involved arguments, can be found
in Guntuboyina and Sen (2012).
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L. Birgé. Approximation dans les espaces metriques et theorie de l’estimation. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65:181–237, 1983.
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Appendix A. Proof of the Theorem 1

We mostly follow the proof of Theorem 6 in Bronshtein (1976) but are more careful and use a
scaling argument in the end so that the dependence on the various constants involved is maintained.
For each f ∈ C([a, b]d, B, L), let us define f̃ on [0, 1]d by f̃(x) := f(a1 + (b − a)x), where
1 = (1, 1, . . . , 1) ∈ Rd. Clearly f̃ ∈ C([0, 1]d, B, L(b − a)) and covering f̃ to within ε in the L∞
metric is equivalent to covering f . Thus,

M
(
C([a, b]d, B, L), ε;L∞

)
= M

(
C([0, 1]d, B, L(b− a)), ε;L∞

)
. (12)

We can thus take, without loss of generality, a = 0 and b = 1. Note that, unlike the proof of
Theorem 2, we may not take B = 1 or L = 1 here. For every f ∈ C([0, 1]d, B, L), we define the
compact, convex set Vf ⊆ Rd+1 by

Vf :=
{

(x1, . . . , xd, xd+1) : (x1, . . . , xd) ∈ [0, 1]d and f(x1, . . . , xd) ≤ xd+1 ≤ B
}
.

For every (x1, . . . , xd+1) ∈ Vf , we have

x21 + · · ·+ x2d + x2d+1 ≤ 1 + . . . 1 +B2 = d+B2,

which implies that Vf ∈ Kd+1(
√
d+B2). We now show that

||f − g||∞ ≤ (
√

1 + L2)`H(Vf , Vg), (13)

for all f, g ∈ C([0, 1]d, B, L). To see this, fix f, g ∈ C([0, 1]d, B, L) and let `H(Vf , Vg) = ρ.
Fix x ∈ [0, 1]d with f(x) 6= g(x). Suppose, without loss of generality, that f(x) < g(x). Now
(x, f(x)) ∈ Vf and because `H(Vf , Vg) = ρ, there exists (x′, y′) ∈ Vg with ||(x, f(x))−(x′, y′)|| ≤
ρ. As f(x) < g(x), the point (x, f(x)) lies outside the convex set Vg which lets us take y′ = g(x′).
Therefore,

0 ≤ g(x)− f(x) = g(x)− g(x′) + g(x′)− f(x)

≤ L||x− x′||+ |g(x′)− f(x)|
≤

√
L2 + 1

√
||x− x′||2 + |g(x′)− f(x)|2 (14)

=
√
L2 + 1||(x, f(x))− (x′, y′)|| ≤ (

√
L2 + 1)ρ,

where (14) follows from Cauchy-Schwarz inequality. Therefore (13) follows as x ∈ [0, 1]d is
arbitrary in the above argument.

We now use (13) to deduce that

M
(
C([0, 1]d, B, L), ε;L∞

)
≤M

(
Kd+1(

√
d+B2),

ε

2
√

1 + L2
; `H

)
.

Thus from (1), we deduce the existence of two positive constants c and ε0, depending only on d,
such that

logM
(
C([0, 1]d, B, L), ε;L∞

)
≤ c

(√
(d+B2)(1 + L2)

ε

)d/2
,
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if ε ≤ ε0
√

(d+B2)(1 + L2). By the scaling identity (12), we obtain

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(√
(d+B2)(1 + L2(b− a)2)

ε

)d/2

if ε ≤ ε0
√

(d+B2)(1 + L2(b− a)2). By another scaling argument, it follows that, for every
Γ > 0,

M
(
C([a, b]d, B, L), ε;L∞

)
= M

(
C([a, b]d, B/Γ, L/Γ), ε/Γ;L∞

)
and, as a consequence, we get,

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(√
(dΓ2 +B2)(1 + L2(b− a)2/Γ2)

ε

)d/2
.

if ε ≤ ε0
√

(dΓ2 +B2)(1 + L2(b− a)2/Γ2). Choosing (by differentiation)

Γ4 =
B2L2(b− a)2

d
,

we deduce finally that, for ε ≤ ε0
(
B + L(b− a)

√
d
)

,

logM
(
C([a, b]d, B, L), ε;L∞

)
≤ c

(
B + L(b− a)

√
d

ε

)d/2
.

The
√
d term above can be absorbed in the constants c and ε0.
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