Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 May 2023 (v1), last revised 24 Feb 2024 (this version, v3)]
Title:Make Lossy Compression Meaningful for Low-Light Images
View PDF HTML (experimental)Abstract:Low-light images frequently occur due to unavoidable environmental influences or technical limitations, such as insufficient lighting or limited exposure time. To achieve better visibility for visual perception, low-light image enhancement is usually adopted. Besides, lossy image compression is vital for meeting the requirements of storage and transmission in computer vision applications. To touch the above two practical demands, current solutions can be categorized into two sequential manners: ``Compress before Enhance (CbE)'' or ``Enhance before Compress (EbC)''. However, both of them are not suitable since: (1) Error accumulation in the individual models plagues sequential solutions. Especially, once low-light images are compressed by existing general lossy image compression approaches, useful information (e.g., texture details) would be lost resulting in a dramatic performance decrease in low-light image enhancement. (2) Due to the intermediate process, the sequential solution introduces an additional burden resulting in low efficiency. We propose a novel joint solution to simultaneously achieve a high compression rate and good enhancement performance for low-light images with much lower computational cost and fewer model parameters. We design an end-to-end trainable architecture, which includes the main enhancement branch and the signal-to-noise ratio (SNR) aware branch. Experimental results show that our proposed joint solution achieves a significant improvement over different combinations of existing state-of-the-art sequential ``Compress before Enhance'' or ``Enhance before Compress'' solutions for low-light images, which would make lossy low-light image compression more meaningful. The project is publicly available at: this https URL.
Submission history
From: Shilv Cai [view email][v1] Wed, 24 May 2023 11:14:40 UTC (44,370 KB)
[v2] Fri, 4 Aug 2023 09:29:35 UTC (26,349 KB)
[v3] Sat, 24 Feb 2024 06:50:22 UTC (46,704 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.