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Abstract

Jamming-resistant broadcast communication is crucial
for safety-critical applications such as emergency alert
broadcasts or the dissemination of navigation signals in
adversarial settings. These applications share the need
for guaranteed authenticity and availability of messages
which are broadcasted by base stations to a large and
unknown number of (potentially untrusted) receivers.
Common techniques to counter jamming attacks such
as Direct-Sequence Spread Spectrum (DSSS) and Fre-
quency Hopping are based on secrets that need to be
shared between the sender and the receivers before the
start of the communication. However, broadcast anti-
jamming communication that relies on either secret pair-
wise or group keys is likely to be subject to scalabil-
ity and key-setup problems or provides weak jamming-
resistance, respectively. In this work, we therefore pro-
pose a solution called Uncoordinated DSSS (UDSSS)
that enables spread-spectrum anti-jamming broadcast
communication without the requirement of shared se-
crets. It is applicable to broadcast scenarios in which
receivers hold an authentic public key of the sender but
do not share a secret key with it. UDSSS can handle an
unlimited amount of receivers while being secure against
malicious receivers. We analyze the security and latency
of UDSSS and complete our work with an experimental
evaluation on a prototype implementation.

1 Introduction

Due to the shared use of the communication medium,
wireless radio communication is not only vulnerable to
traditional attacks such as eavesdropping and message
synthesis but also to active jamming attacks [2, 20]. In
a signal jamming attack, the attacker emits a jamming
signal while the legitimate transmission is taking place,
thus achieving a denial-of-service (DoS) by blocking,
modifying, annihilating, or overwriting the original sig-

nal. Well-known, effective countermeasures against sig-
nal jamming attacks are spread-spectrum techniques, in
particular Direct-Sequence Spread Spectrum (DSSS) and
Frequency Hopping Spread Spectrum (FHSS) [23]. For
these techniques to work, the receivers are required to
share secret keys with the sender prior to their anti-
jamming communication; these keys enable them to de-
rive identical spreading codes or hopping sequences.
Shared secrets are also the basis of proposed anti-
jamming broadcast schemes [6, 8].

The requirement of pre-shared secret keys, however,
imposes limits on the use of common spread-spectrum
techniques for anti-jamming communication in scenarios
where such secret keys cannot be pre-shared (but which
instead rely on, e.g., public-key certificates). This prob-
lem (i.e., the lack of techniques for jamming resistance
without shared secret keys) was recently observed in [4]
and [24] in the context of pairwise communication.

In this work, we focus on a related but different prob-
lem for broadcast communication: How to enable ro-
bust anti-jamming broadcast without shared secret keys?
Typical broadcast applications share the need for authen-
ticity and availability of messages that are transmitted by
base stations (senders) to a large, unknown number of
potentially untrusted (malicious or selfish) receivers. In
such settings, a sender communicates to a dynamic set of
trusted receivers (i.e., the nodes are honest but may be
unknown to the sender due to receiver dynamics) or to
untrusted receivers (which might be interested in obtain-
ing the information themselves but depriving others of
it). In both cases, basing the anti-jamming communica-
tion on pre-shared keys is not an option because (honest)
nodes join the setting after the key deployment or be-
cause malicious nodes may misuse shared keys for jam-
ming. We can best illustrate this by an example:

A governmental authority needs to inform the public
about the threat of an imminent attack. For disseminat-
ing information about the risk, a message could contain
the level of risk, a timestamp, the physical area of risk,



and the signature of the central authority (CA). Note that
if DSSS was used with a (public) spreading code that
is known to the attacker or if no spreading was used at
all for the transmission, the attacker could easily disrupt
the transmission of the message by jamming, thus block-
ing the propagation of the warning within her transmis-
sion radius. The information transferred in this setting
is not secret, hence eavesdropping is not considered a
risk. What is crucial is the dissemination (broadcast) of
authentic information to as many receivers as possible
within a reasonable timeframe (seconds to few minutes).

As a solution to the described problem, we propose
a scheme called Uncoordinated DSSS (UDSSS) that en-
ables authentic spread-spectrum anti-jamming broadcast
without the requirement of shared secrets. UDSSS fol-
lows a similar approach as DSSS, it differs, however,
in the following aspect: the spreading code is not pre-
defined but chosen by the sender randomly out of a set
of publicly available codes. Since no receiver can pre-
dict the choice of the sender, UDSSS prevents dishon-
est receivers from interfering with the communication (to
other receivers) while it enables them to obtain the infor-
mation themselves. After a certain time, every receiver
will succeed in identifying the correct spreading code
and its synchronization, thus despreading the signal. The
required despreading time depends on the coding strat-
egy, the size of the spreading code set, and on the re-
ceivers’ processing capabilities; we analyze this in detail.
Although UDSSS is inherently less efficient than DSSS,
it enables broadcast anti-jamming communication in sce-
narios in which DSSS cannot be used. Besides the exam-
ple described above, an important application of UDSSS
is the jamming-resilient dissemination of navigation sig-
nals. As we will show in Section 7, UDSSS enables not
only anti-jamming localization for broadcast navigation
systems (GPS or similar systems), but it also inherently
protects them against a wide range of location-spoofing
attacks. We will also show that UDSSS can achieve the
same performance as DSSS in the absence of jamming.

In summary, the main contributions of this work are:
• We identify anti-jamming broadcast without shared

keys as a relevant problem and we show that it can
be addressed using uncoordinated spread-spectrum
techniques.
• We propose a scheme called Uncoordinated DSSS

that supports broadcast anti-jamming communica-
tion without shared keys and enables communica-
tion in scenarios in which DSSS cannot be used.
• We analyze the performance of UDSSS. We show

that a performance comparable to DSSS can be
achieved in the absence of jamming and that the ex-
pected time for a message transmission to ten re-
ceivers takes less than 30 s on state-of-the-art sys-
tems under high jamming-probabilities.

• We demonstrate the feasibility of UDSSS by a pro-
totype implementation on a software-defined radio
platform [10]; the reception of a typical message
takes well below 20 s for 21 dB processing gain on
this system. We note that this time can further be
significantly reduced on a purpose-built platform
(e.g., like the ones used for GPS receivers).

The remainder of the paper is organized as follows:
We give background information on DSSS in Section 2
and describe the system and attacker models in Section 3.
In Section 4, we present our UDSSS scheme. We analyze
its security in Section 5 and its performance in Section 6,
including the presentation of our implementation results.
In Section 7, we discuss possible applications of UDSSS.
Finally, in Section 8, we describe related work and we
conclude our paper in Section 9.

2 Background: DSSS

In DSSS, the data signal is modulated with a continu-
ous, pre-defined spreading signal of a higher frequency,
also called the chipping sequence. During the modula-
tion, the data signal gets spread in the frequency domain
and thus becomes resistant against (narrow-band) inter-
ference. The resulting signal is modulated (e.g., using
phase-shift keying) and – given a sufficiently high fre-
quency of the spreading signal – becomes hidden in the
noise of the wireless channel. The processing gain of the
communication system (indicating the ratio by which in-
terference can be suppressed relative to the original sig-
nal) defines the required length N of the DSSS spread-
ing code, determining the spreading signal. More pre-
cisely, given a certain data bit time Tb and a target pro-
cessing gain defined as 10 log10

Tb

Tc
in decibel (dB), we

get N = Tb/Tc, where Tc is the time of a modulated sig-
nal chip (a low signal-to-noise ratio requires Tc � Tb).
A typical processing gain of spread-spectrum systems is
between 20 dB and 60 dB and results from a chip length
N ∈ {100, . . . , 106}.

In anti-jamming applications, the DSSS spreading sig-
nal is secret and shared only by the sender and legit-
imate receivers. This can be achieved by a shared se-
cret key that is used to seed a pseudo-random generator
at the sender and the receivers. The generator outputs
a (pseudo-random) chipping sequence which is used to
spread the message. In order to despread the signal, the
receivers apply a symmetric operation and correlate the
received signal with a synchronized replica of the spread-
ing code. Except for the secret code, all other commu-
nication parameters (modulation, frequency band, etc.)
are public. For the discussion of DSSS we assume that
the receivers are synchronized to the sender (later, we
will show how we remove this assumption in UDSSS).
The synchronization includes both bit and chip time syn-



chronization to the sent signal as well as synchronization
with respect to the used spreading code, i.e., the receivers
know which code to apply at which point in time in or-
der to despread the received signal. We refer to related
literature for a comprehensive discussion of efficient syn-
chronization techniques [2, 20, 23].

In more details, for spreading a messageM , the sender
uses a spreading sequence c0 = (c0,1, c0,2, . . . , c0,`)
composed of ` binary NRZ (non-return to zero) spread-
ing codes, |c0,i| = N . Typical spreading codes used
for DSSS are pseudo-randomly created sequences [23]
and codes with well-defined properties such as Walsh-
Hadamard [11] or Gold-codes [20]. The sender spreads
M by applying code c0,1 to the first b bits of M , c0,2
to the second b bits and so forth, where b denotes the
repetition factor in the use of the spreading codes. By
expressing the codes in the time domain, we can define
a function c0(t) = c0,i[j] for i = bt/bTbc mod N and
j = bt/Tcc mod N , where Tb (Tc) is the data bit (chip)
time. The spreading operation can then be written as
d(t) · c0(t), where d(t) is the data signal that carries the
message. The sender modulates and transmits the result.

Upon signal reception, each receiver demodulates the
signal and samples it (sampling rate Rs ≥ 2/Tc). It
stores the samples in a cyclic buffer which has the ca-
pacity to store samples of several message bits, (i.e., for
the duration of Ts = kTb, k > 1 ∈ N). Then, the re-
ceiver despreads the data stored in the buffer by comput-
ing s :=

∑TbRs

i=0 s[i]c0(ti) for each data bit, where s[i]
denotes the i-th value in the buffer and ti the time when
it was sampled. Finally, the result of the bit integration
s is used to determine the received bit d̂i. We assume
a simple bit decoder that outputs 1 (0) if the integration
yields a value greater (lower) than 0 (i.e., d̂i = dse). Fi-
nally, after all data bits have been despread, the correct-
ness of the despreading operation is verified by means of
the message decoding.

3 System and Attacker Models

3.1 System Model
Our system consists of a sender A and a set of receivers.
The goal of the sender is to enable anti-jamming broad-
cast to the receivers in the presence of communication
jamming. We assume that each device is equipped with
a radio frontend with transmission and reception capa-
bilities in a corresponding frequency band and that the
receivers are computationally capable of efficiently per-
forming (e.g., ECC-based) public-key operations. In ad-
dition, each receiver holds an authentic public key of the
sender or of the central authority (CA) that can certify
the sender’s public key. The CA may be off-line at the
time of communication.

In our model, PA denotes the strength of A’s signal
arriving at a receiver B; PA depends on the strength of
the signal sent by A, on the distance between the sender
and the receiver as well as on large- and small-scale fad-
ing and interference effects [25,26]. We denote by Pt the
minimal required signal strength at the receiver B such
thatB can successfully decode the signal. In this context,
the transmission between A and B in a setting without
(active) interference will be successful if i) PA ≥ Pt, if
ii) A and B use the same spreading code, and if iii) B
uses the correct synchronization in its despreading oper-
ation (code time and carrier frequency synchronization).

3.2 Attacker Model

We adopt the attacker model from [24] and consider an
omnipresent but computationally bounded adversary J
with unlimited power supply that is able to eavesdrop
and insert messages arbitrarily but can only alter or erase
messages by adding her own (energy-limited) signals to
the wireless medium; that is, she cannot disable the com-
munication channel by blocking the propagation of sig-
nals (e.g., by placing a Faraday cage around a node).
The goal of the attacker is to prevent all communication
between the sender A and all or some of the receivers.
In order to achieve this, the attacker is not restricted to
message jamming but can also modify existing or insert
new messages. More precisely, the attacker can choose
among the following actions:
• She can jam messages by transmitting high-power

signals that cause the original signal to become un-
readable by the receiver. The fraction of the mes-
sage that the attacker has to interfere with to suc-
cessfully jam depends on the used coding scheme
(e.g., 13% of the message size [16]).
• She can modify messages by either flipping single

message bits or by entirely overshadowing original
messages. In either case, in this attack the messages
remain readable by the receiver.
• She can insert messages that she generated herself

or reuse previously overheard messages. Depend-
ing on the signal strength and used spreading codes,
the inserted messages might interfere with regular
transmissions.

In addition to these types of attacks, we follow previ-
ous classifications [20] and distinguish different types of
attackers: static, sweep, random, and reactive jammers.
Static, sweep, and random jammers do not sense for on-
going transmissions but jam the channel permanently;
they only differ in the regularity of their jamming sig-
nals. Reactive jammers initially solely sense for ongoing
transmissions and start jamming only after the detection
of a message transfer; we express the strength of reac-
tive jammers by their despreading performance ΛB(N),



denoting the number of spreading codes the attacker can
apply and check per time unit. Repeater jammers [12] are
a subclass of reactive jammers that intercept the signal,
low-noise amplify, filter and re-radiate it without requir-
ing or getting knowledge of the used spreading codes.
Hybrid jammers are a combination of the above types
that jam while searching for message transmissions.

For all attacker types, we assume a finite maximal
transmission power and bandwidth. We denote by PJ
the maximal signal strength that the attacker is able to
achieve at a receiver B; the attacker can split PJ over an
arbitrary number of parallel signal transmissions. Given
PA, the strength of A’s signal at B, we denote by Pj and
Po the minimal required strength of the attacker’s sig-
nal at B in order to jam or overshadow a message sent
from A to B, respectively, provided that the attacker is
aware of the used code sequence and its synchroniza-
tion. We assume Pt ≤ PA and Pj < Po. We further
assume that PJ < µPt, where µ denotes the number of
possible transmissions, i.e., the attacker is not capable
of jamming all possible transmissions in parallel; µ de-
pends on the number of available spreading codes and on
the attacker’s bit and chip synchronization.

4 Jamming-Resistant Broadcast: UDSSS

In this section, we introduce our UDSSS (Uncoordinated
DSSS) scheme. UDSSS is an anti-jamming modulation
technique based on the concept of DSSS, however, it
does not rely on pre-shared spreading sequences. In con-
trast to anti-jamming DSSS communication, where the
spreading sequence is secret and shared exclusively by
the communication partners, in UDSSS, a public set C
of spreading sequences is used by the sender and the re-
ceivers. C is not secret and may be known to the at-
tacker. To transmit a message, the sender randomly se-
lects a spreading sequence from the code set and spreads
the message with this sequence. The receivers record the
signal on the channel and despread the message by ap-
plying sequences from C using a trial-and-error method.

The receivers using UDSSS are not time-synchronized
to the sender with respect to the spread signal, i.e., they
do not know the message bit or chip synchronization.
In order to compensate for this (as well as for message
losses due to jamming), the sender sends the message
repeatedly and the receivers apply a sliding window ap-
proach to synchronize to the transmission. The efficiency
of UDSSS is therefore determined i) by the time that the
receivers need to find the right spreading code and its
synchronization (we will analyze this in detail in Sec-
tion 6) and ii) by the attacker’s jamming success (ana-
lyzed in Section 5). Given that, in UDSSS, the receivers
need to search through a set of codes and synchroniza-
tion windows in order to despread the received message,

UDSSS is inherently less efficient than DSSS. However,
it provides important advantages over DSSS:
• UDSSS enables anti-jamming communication be-

tween nodes that are within each others’ transmis-
sion ranges but do not share a secret, and
• UDSSS supports broadcast anti-jamming commu-

nication for dynamic groups of untrusted receivers.
UDSSS requires the receivers to store all chips re-

ceived and to analyze them retrospectively to find the
used spreading code. The time this takes defines the
latency of the communication. The performance and
jamming-resistance of UDSSS can be increased by using
multiple senders (in contrast to DSSS). More precisely,
we consider m ≥ 1 parallel broadcast transmissions of
the same message with different spreading codes. This
can be achieved by one sender transmitting m signals in
parallel—each spread with a different spreading code—
or by using m separate sending devices.

In what follows, we describe the details of the UDSSS
operations at the sender(s) and the receivers and discuss
suitable choices of the UDSSS spreading code set.

4.1 UDSSS Transmission

We envisage one sending device, but for generality, our
description includes one or multiple senders that trans-
mit the same message in parallel on m ≥ 1 channels us-
ing the code sets C1, . . . , Cm (not necessarily distinct).
For transmitting message M , |M | ≤ `, each sender re-
peatedly selects a fresh, i.e. randomly selected, code se-
quence cs ∈ Ci, spreads M using cs, and transmits the
resulting modulated signal. For each transmission a new
code sequence is chosen; repeated messages thus get en-
coded with a different code sequence on each transmis-
sion (with high probability). All spreading codes are
chosen to be (nearly) orthogonal (strong auto- and low
cross-correlations), hence parallel transmissions of mul-
tiple senders do not (significantly) interfere with each
other; multiple transmissions using the same spreading
code and code synchronization can be excluded by agree-
ments between the senders that are, e.g., linked by wires.
Each sender repeats the spreading and sending opera-
tion either for a well-defined number of iterations (e.g.,
for emergency alert broadcasting) or continuously (for
longer-term applications, e.g. for navigation signals).

Before the UDSSS modulation, each sender applies
the following techniques: In order to achieve message
authentication, sender A signs the message using its pri-
vate key SKA. The sender may also include a times-
tamp or sequence number in the message in order to
achieve replay protection. In order to resist transmission
errors, the sender then error-encodes the message before
the spreading operation; error-coding makes a message
resistant to a certain number of bit errors (e.g., up to 13%
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Figure 1: (a) UDSSS transmission. Sender A signs and error-encodes the message M . Then it repeatedly spreads
the signed and error-encoded data using a freshly selected spreading sequence cs in each repetition and transmits the
modulated signal. (b) UDSSS reception. Receiver B demodulates and samples the radio channel. Then B repeatedly
selects a spreading sequence ci ∈ C, picks k codes ci,j from ci and tries to despread one data bit (using the integration
threshold τ ). On success, B despreads the entire message. A failure during the error-encoding check or signature
verification restarts the despreading process.

for concatenated Reed-Solomon codes [16]). In combi-
nation with bit interleaving, error-encoding increases the
resistance of a message to targeted jamming attacks. The
entire sending process is displayed in Figure 1a.

There are two reasons why the UDSSS transmission
requires message repetitions: i) to enable the receivers
that are not synchronized to the beginning of the trans-
mission to receive the message and ii) due to the risk
that the attacker guesses the used code sequence and thus
jams the transmission (this risk is also present in DSSS
anti-jamming systems). UDSSS receivers will there-
fore not try to decode all received signals but only those
signals that are received in the time intervals when the
sender is expected to transmit. For this, the sender ei-
ther needs to have a (public) transmission schedule (and
the receivers need to be precisely time-synchronized to
the sender) or the sender has to repeat the transmission
of each message such that, when the receivers fill their
reception buffers, they will receive the message (Fig. 2).

4.2 UDSSS Reception

In UDSSS, each receiver samples the radio channel
(sampling rate Rs ≥ q/Tc, q ≥ 2, sample resolution
bs bits) during the sampling period Ts = sTM , and stores
the samples in a buffer; TM denotes the message trans-
mission time and s ≥ 2 is the number of messages that
can be stored in the buffer; given a continuous message
transmission, for s ≥ 2, the signal stored in the buffer
will always contain an entire message. After the buffer
has been filled, the receiver will reject all signals arriving
to its interface (Figure 2) until the message in the buffer
is successfully despread and its authenticity is verified.

After the sampling, the receiver tries to decode the
data in the buffer by applying a sliding-window pro-

B
M1 M2

decoding (Td)sampling (sTm)

A
M1 M2 M2 M2 M2M1 M1 M1 M1

t

t

buffer buffer

Figure 2: UDSSS message sampling and decoding. A’s
repeated transmissions ensure that each receiver B can
sample an entire message. After the sampling, B de-
codes the message M1 contained in the buffer. During
the decoding, B disregards all further samples.

tocol in which the current window is shifted in inter-
vals of Tc/q; a complete run of the despreading opera-
tion is denoted as one decoding. For this purpose, the
receiver chooses k spreading codes ci,j (1 ≤ i ≤ n
and 1 ≤ j ≤ `) from each code sequence ci ∈ C
(see Figure 3) and uses them to despread k data bits,
as sketched in Figure 1b. We check each spreading se-
quence on multiple (k > 1) data bits in order to com-
pensate for transmission or decoding errors. If, during
this process and while applying codes from cr, the ab-
solute value of a bit integration exceeds a threshold τ ,
i.e. s :=

∑TbRs

i=0 s[i]cr,j(ti) ≥ τ , the receiver uses the
code sequence cr for despreading the entire message,
now benefiting from the identified chip synchronization.
τ can be derived from the cross-correlation properties of
the used codes and depends on the code length (see Sec-
tion 4.3). Depending on the available hardware, the de-
spreading operation can partially be performed in paral-
lel or using a multi-stage solution [20].

The bits resulting from this trial-and-error approach
are disinterleaved and verified by means of the error-
encoding of the message. The receiver accepts those



N chips per code
n code
sequen-
ces

MM [1] M [2]

cs,1

cs

c1

c2

cs,ℓ

M [ℓ]

ℓ codes per code sequence

cn,1 cn,ℓ

cs,1 cs,2

c2,2

c1,2 c1,ℓ

cn

c1,1

c2,1

cs,ℓ

c2,ℓ

cn,2
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spread using a randomly selected code sequence cs ∈ C;
M [i] denotes the i-th bit of M .

messages that pass the error-encoding check and hands
them on to the signature verification. Due to possible
message insertions by an attacker, the receiver does not
stop analyzing the buffer after having successfully de-
spread a message with valid error-encoding, but contin-
ues scanning the buffer using the remaining code se-
quences (until a despread message also passes the sig-
nature verification). Thus, the receiver may detect one
or more messages per buffer, coming from the original
transmissions or from message insertions by the attacker.
In any case, the receiver will only pass those messages to
the application layer that contain a valid signature.

4.3 UDSSS Spreading Codes
As a crucial component of UDSSS, we now describe how
to generate the UDSSS spreading codes that are used by
the sender and receivers. In our description, we refer to
one code set C, however, the same applies for each code
set in the case of multiple senders. Figure 3 illustrates the
code set. Every spreading code ci,j is used to spread one
bit of the message M (repetition factor b = 1), ` = |M |.

UDSSS requires the use of balanced spreading codes
that have good auto- and cross-correlation properties;
good auto-correlation properties are needed for pre-
cise synchronization at the receivers and low cross-
correlation properties have the effect that transmissions
with different spreading codes do not interfere with
each other. We thus exclude the following codes that
are typically used in DSSS systems: codes of insuffi-
cient length (e.g., Barker codes), codes with large cross-
correlation properties (e.g., Walsh-Hadamard), and un-
balanced codes resulting in high auto-correlation values
(e.g., optical orthogonal codes [7]). Codes for UDSSS
that satisfy the above properties are shift-register se-
quences, in particular Gold- and Kasami-codes1 [17],
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and pseudo-random sequences [22].

Due to their straight-forward generation, we focus
on pseudo-random codes in the following. A specific
code set C is then given by a (public) seed, used as in-
put to a well-defined pseudo-random number generator.
Given a sufficiently large code lengthN , pseudo-random
codes have good auto- and cross-correlation proper-
ties2. Figure 4 displays the cross-correlation values of
pseudo-random codes and confirms the desired prop-
erty; for a more comprehensive analysis of the properties
of pseudo-random sequences we refer to [22]. Conse-
quently, the attacker has to use the correct code sequence
cs ∈ C in order to interfere with a transmission; using a
spreading sequence c′ 6= cs, c′ ∈ C will not have a rel-
evant impact on the transmission. We can calculate rea-
sonable limits of the parameter ε that specifies the qual-
ity of the correlations. Our simulations suggest that, e.g.,
for random codes of length N = 512 (27 dB), ε / 150
(Figure 4). This enables us to set τ used as integration
threshold by the receiver: τ = aε, a ∈ R ≥ 1. We refer
to Section 6.4 for details on the parameter choices.

Furthermore, the probability that any two random
codes of length N from a set of n` codes agree is ap-
prox. 1− e−(n`)2/2(N+1)

(cf. birthday paradox). For typ-
ical values of N , n, and ` (i.e., N ≥ 64 and n` ≤ 220)
this probability is negligible. Hence, each code sequence
ci is uniquely identified by any of its codes ci,j . While
this is beneficial for the legitimate receivers, the attacker
will likewise know the entire code sequence if she can
successfully identify the code that was used for spread-
ing any particular message bit and might thus be able to
jam the remainder of the message. This will be taken
into account for the analysis of the attacker’s decoding
strength (Section 5.2). Section 6.5 will further display
the impact of n and N on the system performance.



5 Security Evaluation of UDSSS

In this section, we analyze the points of attack on UDSSS
communication and, for various attacker types, derive the
probability that a message is jammed during its transmis-
sion. As we will show, UDSSS provides resistance even
to reactive attackers, a very strong type of attacker.

5.1 Jamming Attacks on UDSSS

An attacker has the following options for performing a
code-based jamming attack on UDSSS communication:
i) she can guess the spreading code and try to jam the
signal using this code, ii) she can repeat the recorded
signal, thus trying to create a collision with the origi-
nal transmission, and iii) she can try to find the code
by despreading (part of) the spread signal and then use
the identified spreading sequence for jamming the rest of
the message during its transmission. In the first case, the
attacker’s jamming signal is independent of the transmis-
sion she is trying to jam (representing a static, sweep, or
random attacker); in the latter two cases, the attacker is
reactive and bases her jamming signal on the detection
(and analysis) of the spread signal. In the following we
refer to reactive jammers that simply repeat the recorded
signal as repeater jammers and to reactive jammers that
aim at finding the used spreading code as decoding jam-
mers. A hybrid jammer can combine non-reactive and
reactive actions.

For non-reactive (static, sweep or random) attackers
(case i), the attacker’s success probability depends on the
number of codes that she chooses from for composing
her jamming signal and on the accuracy of her synchro-
nization to the spread signal. Although (U)DSSS sig-
nals are usually hidden in noise, they can be detected
by means of energy detectors or by their modulation-
specific characteristics [9,20]. Depending on the strength
of the attacker and the processing gain achieved by the
modulation, the attacker might therefore be able to re-
cover a message transmission and its chip synchroniza-
tion without having to decode a message; however the
attacker still needs to guess the used spreading code in
order to jam the signal. In all cases, the jamming suc-
cess probability of a non-reactive attacker depends on
the number of codes in the code set; this probability is
further decreased if the attacker cannot detect the chip
synchronization (Sec. 5.2).

The purpose of using a different spreading code for
each message bit (b = 1) is to prevent successful re-
play attacks from repeater jammers [12] (case ii). Due
to the low auto-correlation properties of the codes, the
attacker’s repeated signal would have to arrive at the re-
ceiver within one chip length Tc in order to affect the
transmission; this requires the attacker to have an (al-
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tB t2t1
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t3

Propagation delay

M [1]

Despreading time Td (B)

Td̂Ta Tj
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Tp
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Figure 5: UDSSS attack scenario for reactive (decoding)
jammers. Sender A sends message M with transmission
time TM . Receiver B and a reactive jammer J start to
despread the (same) signal samples after having recorded
the first chips. J’s jamming attack may only succeed if
tj < t2, i.e., if the attacker succeeds to compose and send
its jamming signal such that it reaches B before B has
received the entire message M ; otherwise the jamming
fails and B will despread the message at time t3. The
main advantage for the receiver over the attacker comes
from the fact that the attacker only has very short time
(< TM ) to despread the message, whereas the receiver
can despread the message long after having recorded it
(within the latency that the application can tolerate).

most) zero processing delay (e.g., for signal inversion)
and to be positioned very close to the signal’s path of
travel (e.g., within a typical Tc = 10ns, the signal trav-
els less than 3m). More details are provided in Sec. 5.2.

Although decoding-based attacks (case iii) are con-
sidered infeasible in DSSS, the probability of such an at-
tack is non-negligible for UDSSS communication due to
the restricted number of possible spreading codes. Fig-
ure 5 displays the attack scenario for decoding attackers.
A decoding attacker needs time to acquire the signal, to
detect the spreading code used by the sender, and to ex-
ploit this knowledge to compose and transmit the jam-
ming signal. Her reaction time is limited by the message
transmission time (TM ) and the fraction that needs to be
jammed (TM ). More precisely, the attacker’s response
time (with effect at the receiver) is composed of:
Ta time for signal acquisition (min. number of chips)
Td̂ expected time for detecting the spreading code
Tj time for jamming signal generation & transmission
Tp propagation time difference via the attacker (see

Figure 6).
Ta and Tj are mainly determined by the attacker’s de-
vice, Td̂ by her computational capabilities (Figure 7),
and Tp is given by the attacker’s position relative to the
sender and receiver. A reactive attacker can be success-
ful with her jamming attack only if Ta +Td̂ +Tt +Tp <
TM − TM .

For this reason, the success probability of a decoding
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Figure 6: Propagation delay of the jamming signal (for
reactive jammers). The displayed times represent propa-
gation delays. Tp = Tp2 + Tp3 − Tp1 is the time that the
attacker’s signal will be delayed at the receiver B due
to propagation delay; Tp = 0 if J is positioned on the
signal path between A and B.

attacker depends on the time that she needs to identify
the used spreading code and its synchronization with re-
spect to the received signal. The code set must limit the
search space for the receiver (smaller C is better), while
it must still be sufficiently large to prevent the attacker
from guessing or systematically finding an effective jam-
ming signal within the message transmission time TM .
Although this might appear as a strong gain in favor of
a well-equipped attacker, we stress that the time that the
attacker has to find the missing spreading code and its
synchronization is small (i.e., limited by TM , in the or-
der of hundred µs for small messages) while the time
for the receiver to despread the recorded message is long
(only limited by the application requirements, O(s)). In
Section 6, we study how the size of the code set impacts
the communication performance of UDSSS.

5.2 Jamming Performance of the Attacker

We now derive the jamming probability for different
types of attackers. We use the maximal signal strength
PJ that the attacker is able to achieve at the receiver if she
transmits with maximal transmission power (Sec. 3.2).
Since PJ can be distributed over an arbitrary number
of simultaneously transmitted signals, the attacker is al-
lowed to freely choose how much of this power she will
use to insert, jam, or overshadow messages as long as the
overall signal strength received atB does not exceed PJ .
Consequently, given the minimal required signal strength
at B such that a message is successfully received (Pt),
jammed (Pj), or overshadowed (Po) (Sec. 3.2), we can
derive ni := bPJ

Pt
c, nj := bPJ

Pj
c, and no := bPJ

Po
c as up-

per bounds for the number of messages that the attacker
can insert, jam, and overshadow in parallel.

Static, Sweep, and Random Jamming

We now consider an attacker that tries to guess the used
spreading sequence. Let TM be the minimum jamming
period during which the attacker has to interfere with
the transmission of a message M such that it cannot

be decoded by the receiver. The length of this period
depends on the used coding scheme: the more bit er-
rors it can tolerate, the longer is TM . We next compute
the probability pj that a message is jammed for static,
sweep, and random jammers (Section 3.2). Sweep and
random jammers switch their jamming signal (i.e., the
set of code sequences Cj ⊆ C that is jammed) after
a duration of TM whereas static jammers use the same
signal for a time t � TM . Moreover, sweep jammers
do not reuse a code sequence until all sequences from
C have been used once, whereas random jammers al-
ways choose the set Cj at random and might thus se-
lect the same code sequences more than once in sub-
sequent jamming attempts. For both the sweep and
the random jammer, the number of jamming attempts
per message is TM/TM . Hence, the probability that a
message is successfully jammed by a static jammer is
pj(nj) ≤ nj

n|M |N ; for sweep jammers the jamming prob-

ability is pj(nj) ≤ min{ nj

n|M |N
TM

T
M

, 1}, and for random

jammers it is pj(nj) ≤ 1 − (1 − nj

n|M |N )TM/T
M . Note

that the attacker has to hit both the right code sequence
(out of n sequences) and chip synchronization (N |M |).

Reactive and Hybrid Jamming

A reactive decoding jammer tries to find the sender’s
spreading sequence by performing a search over C.
When successful, the attacker knows both the sender’s
spreading sequence cs as well as its synchronization and
uses this knowledge to jam the remainder of the mes-
sage M . Throughout this analysis, we make the (worst
case) assumption that successfully decoding a single bit
of M reveals to the attacker the code sequence that the
sender used to spread M (Sec. 4.3). The attacker’s abil-
ity to jam a message is thus determined by the time that
the attacker needs to identify the sender’s code sequence
and by the time that she then has left to (partially) jam
the same message. Let ΛJ(N) denote the number of bits
that the attacker can despread per second (possibly ben-
efiting from hardware parallelization). The number of
code sequences that the attacker is able to verify during
the transmission of M such that she detects M ’s spread-
ing sequence early enough to be able to successfully jam
the message is then ≤ (TM − TM )ΛJ(N). Thus, the
probability that a message transmission is detected and
jammed is

pj(nj) ≤ min
{

(TM − TM )ΛJ(N)
n|M |N

, 1
}
.

The despreading performance of a decoding (reactive)
attacker is exemplified in Figure 7; in Section 6, we will
compare it to the receiver’s message decoding perfor-
mance. Figure 7 shows the expected time that a decoding
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Figure 7: Message detection performance of a decoding
attacker as a function of her computing power. This plot
depicts the decoding capabilities of a perfect decoding
jammer that is able to identify the used spreading code
after decoding a single bit (i.e., k = 1). The effective im-
pact of the attacker’s computing power on the jamming
resistance of a message depends on the message trans-
mission time TM . For a given code set size of n = 10
code sequences, in this example, the attacker can block
a message of |M | = 2000 bits if her computing power
exceeds approx. 2 · 1013 IPS (2 · 1015 IPS for n = 1000).

attacker (using the receivers’ trial-and-error approach)
will need to identify the used spreading code sequence;
hardware parallelization in the decoding operation can be
mapped to a higher decoding performance. The attacker
can only be successful if her time to identify the right
code sequence is shorter than the message transmission
time (intersection with TM ). We point out that even if the
attacker uses more elaborate correlation or deconvolution
algorithms, her decoding strength can still be expressed
by the expected number of bit decodings per second that
her algorithm achieves.

Hybrid jammers are a combination of non-reactive and
reactive jammers: while searching for the right spreading
code, they simultaneously emit a jamming signal. For the
most powerful hybrid jammer type, the reactive-sweep
jammer [24], the probability that a message is success-
fully jammed is

pj(nj) ≤
η

n|M |N
+(

1− η

n|M |N

)
min

{
(TM − TM )ΛJ(N)

(n− η)|M |N
, 1
}
,

where η = min{njTM/TM , n}.

Message Overshadowing: Following the above analy-
sis we can also derive the probability that the transmis-
sion of a message is overshadowed by the attacker by
substituting nj with no in the above expressions for pj .
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Figure 8: Position of repeater jammers. (a) Area within
which a repeater jammer needs to be located in order
to successfully jam the communication from A to B
(based on signal transmission times). The ellipse is de-
fined by major diameter dAB + 2x and minor diameter
2
√
x2 + xdAB around A and B; 2x is the distance that

the signal travels during the chip time Tc (2x = 3 m for
Tc = 10−8 s). (b) Transmission delay (2x) of the signal
path via the attacker. The smaller Tc, the smaller the area
will be in which a repeater jammer needs to be located in
order to jam successfully.

Repeater Jammers

As a special case of reactive jammers, repeater jammers
have pj > 0 only if their signal acquisition, processing,
transmission, and propagation delay via the attacker is
less than the chip time (i.e., Ta + Tpr + Tj + Tp < Tc);
otherwise the jamming signal will not interfere with the
legitimate transmission due to the auto-correlation prop-
erties of the spreading codes. For a sample chip rate of
100 Mb/s, the signal travels around 3 m during the trans-
mission of one chip (Tc = 10−8 s). This requires the
attacker to be positioned within an ellipse with major di-
ameter dAB + 3 m around the sender and the receiver in
order to jam their communication successfully, see Fig-
ure 8. Note that this example considers only the trans-
mission delay of a chip; the attacker’s position is even
more restricted for Ta + Tpr + Tj > 0. Hence, repeater
jamming implies stringent conditions both on the at-
tacker’s position and on her hardware reaction times. Ad-
ditionally, repeater jamming affects coordinated DSSS
and UDSSS equally and we therefore focus on (UDSSS-
specific) decoding jammers in the following evaluation.

6 Performance Evaluation of UDSSS

We next evaluate the performance of UDSSS. For sim-
plicity, we first evaluate the scheme for one receiver only
and then generalize the results to multiple receivers (Fig-
ure 9 displays their decoding performances). We start
by analyzing the original UDSSS scheme in the absence
of jamming and from that we derive the entire analy-
sis. We will show in Section 6.4 how—in the absence of



jamming—UDSSS can easily be enhanced to yield the
same performance as DSSS.

6.1 Communication without an Attacker

In the absence of malicious interference, we can expect
that a UDSSS receiver will (on average) successfully de-
code a message once it has tried a fraction of 1

m+1 of all
codes, where m is the number of parallel transmissions
that each use different codes. The expected time for mes-
sage recovery at the receiver is therefore

Tr ≈ Ts+Td =
s|M |N
R

+

(
n

m+1Nkq + 1
)
|M |(s− 1)

ΛB(N)
,

(1)
where Ts = sTM is the sampling period, TM := |M |N

R
is the time to transmit a message, Td is the time to de-
code a message, R := 1/Tc is the chip rate, q is the
number of samples per chip, ΛB(N) is the number of bit
despreading operations that the receiver B can perform
per second (despreading one bit requires Nq additions
and multiplications), and k is the number of bits that are
despread in order to decide whether the code sequence
and synchronization are correct. Thus, the throughput of
UDSSS is

L =
|M |
Tr

=
|M |

s|M |N
R + ( n

m+1Nkq+1)|M |(s−1)

ΛB(N)

≈ 2ΛB(N)
nNkq(s− 1)

. (2)

The approximation holds if Ts � Td, that is, if
s|M |N � R and 1� nN . For a state-of-the-art system
that can execute about 1010 IPS, the time Td to decode a
message is in the order of seconds, whereas the time TM
to transmit a message is in the order of hundred µs. In
the same setting, DSSS—where the used spreading code
and synchronization are known to the receiver—would
achieve a throughput of |M |TM

= R
N , which is about one or-

der of magnitude higher than that of UDSSS. However,
UDSSS is only used when (coordinated) DSSS cannot
be applied for broadcast anti-jamming communication
(e.g., due to lack of shared keys). The low throughput of
UDSSS should therefore be compared to zero throughput
of DSSS. Furthermore, since ΛB(N) = O(N−1) we get
Tr = O(|M |N2n) and L = O(N−2n−1), showing that
increasing the processing gain (i.e., N ) is more harm-
ful to the latency/throughput than increasing the code
set (i.e., n). Thus, by raising n, an increase of the at-
tacker’s processing power can be counteracted with less
impact on the message latency than an increase of the
attacker’s bandwidth and jamming power (which would
require raising N ).

6.2 Communication in the Presence of an
Attacker

We now analyze the impact of message insertion, jam-
ming, and overshadowing on the performance of UDSSS
by using the probability pj (po) that a message is jammed
(overshadowed), as derived in Section 5.2. Attacker’s
messages whose signal strengths at the receiver are less
than Pj have no impact on regular messages. Conse-
quently, the attacker can insert only up to nj := bPJ

Pj
c

messages that will interfere with regular message trans-
missions, provided that they use the same spreading code
sequence and synchronization as the sender. The prob-
ability that a message inserted by the attacker prevents
the successful decoding of a regular message is thus
≤ nj/(n|M |N). Since we assume that all messages
are authenticated and integrity-protected with a signa-
ture and that the attacker is unable to forge signatures,
partially modified messages will be recognized and ig-
nored by the receivers. The only way for the attacker to
effectively modify a message is thus to replace it (e.g.,
by replaying an overheard message).

Let ρi, ρj , and ρo such that 0 ≤ ρi, ρj , ρo ≤ PJ and
ρi + ρj + ρo ≤ PJ be the power at the receiver that the
attacker uses to insert, jam, and overshadow messages,
respectively. The expected time to receive a message is
then Tr ≤ T (b ρi

Pt
c, b ρj

Pj
c, b ρo

Po
c), where

T (ni, nj , no) =
∞∑
i=0

p(s−1)i
e (Ts + Td) =

Ts + Td

1− ps−1
e

=
(
sN

R
+
nNkq(s− 1) + sni

ΛB(N)

)
|M |

1− ps−1
e

≈ Nkq|M |(s− 1)
ΛB(N)

n

1− ps−1
e

, (3)

where Ts is the sampling time, Td the time to decode
a message if all codes are tried, and pe := (pj(nj) +
po(no))m; the last approximation holds if sni ≤ sn �
nNkq(s− 1) and s|M |N � R.

Theorem 1 (Optimal Choice of the Sampling Buffer
Size). Assuming that the sender is continuously broad-
casting the same message, in order to capture the mes-
sage, the receiver needs to have a buffer capacity of
s = Ts/TM ≥ 2 messages. In other words, after the
sampling, the buffer must contain an entire message for
the despreading. Provided that Nkq � 1, a buffer ca-
pacity of s = 2 messages is optimal with respect to the
expected time to receive a message.

Proof. Let, by contradiction, s∗ > 2 be the op-
timal capacity for the buffer. Hence, from Equa-
tion 3, (s∗−1)nNkq|M |

ΛB(N)(1−ps∗−1
e )

< nNkq|M |
ΛB(N)(1−pe) must hold, i.e.,

1−ps∗−1
e

1−pe
> s∗ − 1. However, for s∗ ≥ 2 we have
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Figure 9: (a) Probability that a UDSSS message has been successfully received by all receivers as a function of the
number of message decodings. (b) Expected time to disseminate a message as a function of the number of receivers;
the decoding time Td of the receivers is assumed to be 2 s. (c) Expected time to disseminate a message as a function of
the number of parallel message transmissions for a decoding time Td of 2 s. For (a) – (c), the lines show the expected
result according to our analytical analyses, the points and σ-confidence intervals display simulation results.

1−ps∗−1
e

1−pe
≤ limpe→1

1−ps∗−1
e

1−pe
= s∗ − 1, leading to a

contradiction.

Theorem 2 (Optimal Attacker Strategy). Given that
Nk � 1, the optimal attacker strategy against UDSSS
by which the attacker maximizes the message latency
is jamming. That is, for all ρi, ρj , and ρo such that
0 ≤ ρi, ρj , ρo ≤ PJ and ρi + ρj + ρo ≤ PJ :
T (b ρi

Pt
c, b ρj

Pj
c, b ρo

Po
c) ≤ T (0, bPJ

Pj
c, 0).

Proof. Since Pj < Po and by definition of pj and po
∀α1, α2 ≥ 0 : po(α1) ≤ pj(α1) and pj(α1) +
pj(α2) ≤ pj(α1 + α2) it holds that pe = pj(b ρj

Pj
c) +

po(b ρo

Po
c) ≤ pj(b ρj

Pj
c) + pj(b ρo

Pj
c) ≤ pj(bρj+ρo

Pj
c).

Hence, T (b ρi

Pt
c, b ρj

Pj
c, b ρo

Po
c) ≤ T (0, bρi+ρj+ρo

Pj
c, 0) ≤

T (0, bPJ

Pj
c, 0); i.e., spending all power on jamming is op-

timal for the attacker.

6.3 Generalization for Multiple Receivers

If two receivers are synchronized (i.e., sample the same
message transmissions) and are positioned appropriately,
they will encounter the same attacker-caused errors and
require the same amount of time to receive the message
(here we assume that the attacker is strong enough to jam
all receivers with the same probability, regardless of their
relative position to the sender). Moreover, the expected
duration Tr(2) until both receivers have successfully re-
ceived the message equals the single receiver scenario
(i.e., Tr(2) = Tr). Thus, without loss of generality, any
group of receivers that sample the same message trans-
missions can be regarded as a single receiver.

Now, let l be the number of receivers that sample
message transmissions independently (e.g., due to asyn-
chronous sampling schedules, different propagation con-
ditions, or differing distances from the attacker). The
probability that at least one of the receivers has not yet
successfully received the message once each receiver has
sampled i transmissions is 1− (1− pie)l. Hence, the ex-
pected duration Tr(l) until all l receivers have received
the message is Tr(l) ≤ T (ni, nj , no, l), where

T (ni, nj , no, l) =
∞∑
i=0

(
1−

(
1− pie

)l)
(Ts + Td)

≈ nNkq|M |
ΛB(N)

∞∑
i=0

(
1−

(
1− pie

)l)
.

(4)

The impact of the number of receivers on the number
of required message decodings and on the time to dis-
seminate a message by UDSSS is depicted in Figures 9a
and 9b. We observe that even for a high jamming proba-
bility of 80%, all receivers have received a message with
probability ≥ 90% after about 30 message decodings.
Furthermore, the time for all l receivers to receive and de-
code a message is logarithmic in the number of receivers.

6.4 Optimization and Discussion
One limitation of the UDSSS scheme proposed in Sec-
tion 4 is its inflexibility to the attacker’s strength so that
the latency will be high even if no attacker is present.
In the following, we analyze techniques to improve the
performance of UDSSS. We will show i) that selecting a
uniform code distribution is optimal and ii) that stopping



the decoding process once a valid message was found
decreases the message latency. We also show that iii)
splitting a large code set into smaller, distinct sets for
multiple senders does not decrease the message latency
in general. For simplicity, we consider one receiver only
but the results also hold for multiple receivers.

Theorem 3 (Optimal Code Distribution). Let p(ci) de-
note the probability with which code sequence ci ∈ C
is selected by the sender. Without loss of generality, let
further 1 ≥ p(c1) ≥ p(c2) ≥ . . . ≥ p(cn) ≥ 0 and∑
s p(cs) = m. Selecting ci under a uniform distribu-

tion from a set of n∗ codes (i.e., p(ci) = m/n∗ for 1 ≤
i ≤ n∗ and p(ci) = 0 for n∗ < i ≤ n) is optimal with
respect to the expected time Tr to receive a message.

Proof. The best strategy for the attacker is to focus
her jamming on those codes that are the most likely
to be used. Given a code distribution function p(·),∑n
i=1 p(ci) = m, and ñj = npj(nj) as the expected

number of codes that the attacker can use in parallel to
effectively block ongoing transmissions, we get pe :=∏n
i=ñj+1(1 − p(ci)). It follows from Eq. 3 that Tr is

minimized if pe is minimized, that is, if p(ci) = m/n∗

for 1 ≤ i ≤ n∗ and p(ci) = 0 for n∗ < i ≤ n; the op-
timal number n∗ of codes can (numerically) be derived
from (3) once p(ci) and ñj are given.

Early Termination at the Receiver. The expected
time to receive a message can be reduced if the receiver
stops the despreading process once it verified a valid
message. Here,

Tr ≤
∞∑
i=1

pmie (Ts + Td) +
Nkq|M |
ΛB(N)

m−1∑
i=0

pie
n

m+ 1

≈ Nkq|M |
ΛB(N)

(
npme

1− pme
+

n

m+ 1
1− pme
1− pe

)
, (5)

where the first term accounts for the number of unsuc-
cessful transmission rounds and the second term is the
expected time for the decoding in the last, successful
round. Figure 10 compares the expected despreading
times of the original UDSSS scheme and the scheme
with early termination for multiple senders depending on
the jamming probability.

Theorem 4 (Multiple Code Sets). Consider m sending
devices with code sets C1, . . . , Cm, where Ci ∩ Cj = ∅
for i 6= j, |C1| ≤ |C2| ≤ · · · ≤ |Cm|, and

∑
i |Ci| = n,

which are broadcasting messages in parallel; the proba-
bility for each code sequence cj ∈ Ci to be used in the
current transmission is p(cj) = 1

|Ci| . The expected time
Tr to receive a message is equal to the case where the m
messages are chosen from one common set C of size n
such that p(cj) = m

n .
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scheme is close to optimal for ñj < n/2 and optimal if
ñj ≥ n/2.

Par. Definition Value Range
N spreading code size ≥ 128 chips (21 dB)
n #code sequences up to performance limits
l #codes per spr. sequence |M |
k #despread data bits 2 ≤ k ≤ #bits the error-

per spreading sequence encoding can correct
s buffer size sTM 2
τ integration threshold N/2 or 2ε

Table 1: UDSSS parameter settings. The larger N and n
are, the more jamming-resistant the scheme is. k, s, and
τ do not affect the jamming resistance but the decoding
performance. A rough, but good estimate for τ is N/2;
more precise values can be determined by simulations
(see Fig. 4), e.g., τ = 90 (200) for N = 256 (1024).

Proof. Let ai denote the number of codes the attacker
blocks from the set Ci. The attacker’s optimal strategy
is to select each ai such that she maximizes the proba-
bility p̃e =

∏m
i=1

ai

|Ci| that all m messages are blocked,
under the constraints

∑m
i=1 ai ≤ ñj and ai ≤ |Ci|

∀i ∈ {1, ..,m}. Hence, p̃e is maximized if ai

|Ci| = aj

|Cj | ,
i.e., if the attacker jams each code set with the same prob-
ability. Then, |Ci| = n

m (Th. 3) and ai = ñj

m , thus
p̃e =

∏m
i=1( ñjm

nm ) = ( ñj

n )m. This probability is equal
to the probability pe = pj(nj)m = ( ñj

n )m that m mes-
sages are blocked if the codes are chosen out of a set of
size n where the attacker can block ñj codes.

Although splitting a large code set into smaller sets
for multiple senders is not beneficial for the latency in
general, we can achieve the same message latency as
(non-synchronized) DSSS in the absence of jamming by



Figure 11: Experimental hardware setup of the UDSSS
implementation, consisting of a Universal Software Ra-
dio Peripheral (USRP) and a Lenovo T61 ThinkPad.

choosing m = 2 with C1 = {c1}, p(c1) = 1, and
p(c2) = 1

|C2| . In the absence of jamming, the first code
c1 ∈ C1 used by the receiver will succeed.

Parameter Selection. The exact UDSSS parameter
values depend on the hardware in use and on the as-
sumed attacker strength. The values presented in Table 1
may therefore vary depending on the hardware and ap-
plication. In general, the product nN |M | represents the
security parameter of UDSSS and should at least be in
the order of 106; the smaller |M | is the more jamming-
resistant the scheme is.

6.5 Implementation Results
In this section, we demonstrate the feasibility of our
UDSSS scheme by means of a prototype implementation
based on Universal Software Radio Peripherals (USRPs)
[10] and GnuRadio [1] (see Figure 11). The USRPs in-
clude a A/D (D/A) converter that provides an input (out-
put) sampling rate of 64 Mb/s (128 Mb/s) and an input
(output) sample resolution of 12 bits (14 bits); the em-
ployed RFX2400 daughterboards were configured to use
a carrier frequency of 2.4 GHz. In our experiments, two
USRPs (one being used as a UDSSS sender, the other as
a UDSSS receiver) were each connected via a 480 Mbps
USB 2.0 link to a Lenovo T61 ThinkPad (Intel Core 2
Duo CPU @ 2.20 GHz) running Linux (kernel 2.6.27)
and GnuRadio (version 3.0.3). For performance reasons
and for ease of deployment, our UDSSS sender and re-
ceiver applications were written entirely in C++, which
required porting some GnuRadio libraries from Python
to C++. A schematic scheme of our implementation is
given in Figure 12.

The sender first encodes the message with a (8,4)
Hamming code and scrambles (interleaves) the bits ac-
cording to a public pseudo-random permutation. Next
the sender chooses a spreading code sequence uniform at
random, spreads the (encoded and scrambled) message
with this code, and sends the resulting chip sequence
to the USRP using a differential encoding: the current

USRP

usrp sink

bit scrambling

usrp source

bit despreading

bit unscrambling

USRP

ECC encoding

message sender message receiver

ECC decoding

bit spreading

Figure 12: Schematic description of our UDSSS sender
and receiver application.

phase of the baseband signal remains unchanged for a +1
and its phase is shifted by 180◦ for a −1. This step (i.e.,
choosing a code, spreading, and sending the message) is
repeated until the sender stops the message transmission.

The receiver samples the channel for a duration of
2TM , where TM is the transmission time of a message,
decodes the samples into a chip sequence, and stores the
sequence into a FIFO buffer. A second thread reads the
sequences from the FIFO buffer, decodes all possibly in-
cluded messages by trying all n code sequences on all
N |M | positions. To decide whether a code and posi-
tion pair is valid, a two-level test is used: The sender
first despreads two randomly selected bits. If the abso-
lute value of the code-bit correlation for at least one of
the bits is ≥ N/2, it decodes (i.e., despreads, unscram-
bles, and error-corrects) the first 8 bytes of the message.
If these 8 bytes are also valid, the whole message is de-
coded and the included signature verified.

In our experiments, we positioned the UDSSS sender
and receiver indoors at a distance of about 5 m and per-
formed a series of message transfers using UDSSS from
the sender to the receiver. The size of the transmitted
messages was 256, 512, 1024, 1536, and 2048 bit. The
code sets contained up to 500 pseudo-random code se-
quences and the length of these codes was in the range
from 32 to 512 chips. Figures 13a and 13b display the
decoding times as a function of the message size |M |,
code length N , and code set size n. We observe that the
decoding time increases linearly with the message size
and code set size but quadratic with the code length; this
observation is in line with our analytical model. The
results further show that, even with this non-optimized
(software-based) system, the expected time to receive
and decode a typical message (|M | ≤ 2048 bit) is well
below 20 s (for a processing gain of 21 dB and n = 100).

We point out that the main purpose of this USRP/CPU-
based system is to demonstrate the feasibility of UDSSS.
The achieved decoding times should thus not be consid-
ered as performance benchmarks. As the operations to
decode a bit can easily be executed in parallel, decoding a
bit is typically a single-step operation on hardware-based



 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500

code length N per bit

Duration (in sec) to receive and decode a message

n

IPS
= 100
= 4.7⋅10

8

|M| = 256
|M| = 512
|M| = 1024
|M| = 1536
|M| = 2048

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500

number of code sequences n

Duration (in sec) to receive and decode a message

N

IPS
= 256
= 4.7⋅10

8

|M| = 256
|M| = 512
|M| = 1024
|M| = 1536
|M| = 2048

(b)

Figure 13: Implementation Results. The plots show the time to receive and decode a message with our UDSSS
implementation as a function of the message size |M |, code lengthN , and code set size n. The points and σ-confidence
intervals represent the measurements results, the lines the analytical results for a processing speed of about 470 MIPS.
We observe that the decoding time increases linear with the message size and code set size but quadratic with the
code length. Even with this non-optimized (software-based) system, the expected time to receive and decode a typical
message (|M | ≤ 2048 bit) is well below 20 s (for a processing gain of 21 dB and n = 100). On hardware-based DSSS
transceivers, bit decoding operations are usually executed in parallel. Purpose-built UDSSS receivers are thus likely to
achieve decoding times that are about O(N) times (i.e., 10-1000 times) lower than the times presented in this figure.

DSSS receivers. Realistic decoding times of purpose-
built UDSSS transceivers will thus be O(N) times (i.e.,
10-1000 times) lower than what we achieve with the pre-
sented implementation. As a next step, we intend to op-
timize our implementation by adding Streaming SIMD
Extensions (SSE) support to the core despreading func-
tions and by offloading some of the work to the GPU of
the graphic card.

7 Outline of UDSSS Applications

In this section, we present applications for UDSSS
broadcasts. The scenarios we will describe share a risk of
jamming and of potentially malicious users; in these set-
tings, DSSS communication would either be infeasible or
could easily be disrupted by jammers. We demonstrate
that the delays which are introduced by the UDSSS trial-
and-error reception still enable practical and security-
relevant applications.

We consider one or multiple senders that want to dis-
seminate information by broadcasting messages to a set
of receivers in a jammed environment. Each receiver
holds the authentic public key of the sender but does not
share a secret key with it. Such a situation can occur if
the sender wants to communicate to a set of untrusted re-
ceivers that may want to deprive other receivers from ob-
taining the information broadcasted by the sender, or if a
set of trusted receivers is dynamic, unknown, or even un-
predictable (hence, authentic secret keys between sender
and receivers cannot be established beforehand).

Examples for such settings are i) emergency notifica-
tion (pager) systems (e.g., Plectron [19]) used to activate
emergency response personnel and disaster warning sys-
tems or ii) central (governmental) authorities that need
to inform the public about the threat of an imminent
or ongoing (terrorist) attack. The danger that attackers
jam the alert transmission needs to be minimized. In-
formation dissemination in this setting is clearly time-
critical, however, being able to distribute the information
within seconds to few minutes is clearly preferred over
not being able to disseminate any information at all un-
der jamming. We further argue that, in the absence of
jamming, UDSSS permits delays as short as DSSS does
(see Section 6.4) and that, once the information has been
received by some devices, other communication means
(e.g., speech or landline) may additionally support its
dissemination to more people concerned.

Another notedly well-suited application for UDSSS
is the broadcast of navigation signals which are fore-
most used for time synchronization and localization. Ex-
amples of navigation systems include satellite naviga-
tion (e.g., GPS [27]) and terrestrial systems such as Lo-
ran [13] (based on TDoA) and DME-VOR [5] (based on
distance/angle measurements). Localization and time-
synchronization systems require the reception of navi-
gation signals from multiple base stations; in general, at
least three or four different signals are necessary for most
localization methods [5]. The broadcast stations are pre-
cisely time-synchronized (e.g., via wired links) and lo-
cated at static or predetermined positions. Each broad-
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Figure 14: (a) Possible application of UDSSS: jamming- (and spoofing-)resistant reception of navigation signals used
for positioning (pos) and/or time-synchronization (t). The receiver records the signals of multiple senders which
were spread using randomly selected spreading sequences and uses UDSSS decoding to retrieve the sent messages
and compute its position and/or local time. (b) UDSSS signals are highly resistant against narrow-band jamming
attacks (by jammer J) because they are sent entirely below noise level. UDSSS likewise prevents signal-delay attacks,
because the attacker can only delay individual navigation signals after her decoding, i.e., after having identified the
used spreading sequences.

cast station transmits navigation signals either continu-
ously due to a fixed schedule (GPS, Loran-C) or sends
replies to individual localization requests (DME-VOR,
WLAN-localization), based on which the localized de-
vice determines its position.

Without appropriate protection, navigation signals are
vulnerable to signal spoofing, synthesis, and jamming
attacks [14, 21]. E.g., while current civilian imple-
mentations using GPS satellite signals [27] or terrestrial
WLAN signals [3] (based on the 802.11b standard) ap-
ply spreading to make the transmissions resistant to unin-
tentional interference, they do not provide any means to
counteract targeted Denial-of-Service (DoS) attacks be-
cause their spreading codes are public and can thus be
misused for jamming.

UDSSS offers an enhancement to the dissemination of
navigation signals that counters targeted jamming. Navi-
gation messages are typically in the order of several hun-
dred bits (e.g., 1.5 kb for GPS messages [18]) and will—
even comprising authentication credentials—fit into the
considered UDSSS message lengths (in our evaluation
in Section 6, the messages were up to 2048 bits long).
Each base station uses randomly selected code sequences
to spread the messages using UDSSS. The property of
the wireless channel enables the receivers to record sam-
ples of several navigation signals in parallel in one buffer
(same principle as multi-user CDMA). The receivers can
then use UDSSS decoding in order to extract three (or
more) individual messages (along with their precise ar-
rival times) in one decoding, verify their authenticity,
and therefrom derive position and/or time information
(see Figure 14a). Unlike DSSS, UDSSS cannot decode
navigation signals in real time, but decodes them with
a delay Tr, which is largely determined by the process-

ing speed of the receiver. Depending on the implemen-
tation and underlying hardware, this delay may vary up
to several seconds. However, even if UDSSS causes a
delay, the computed position and time are accurate since
UDSSS still enables the receiver to record the exact ar-
rival times of the signals it receives.

The delay introduced by the UDSSS decoding is of
little importance for pure time-synchronization because
time represents a rather stable property of a device: Once
it is accurately determined, time may slowly degrade by
clock drift depending on the clock quality, but it is usu-
ally not reset as abruptly as a new position for a mobile
device. In this case, after the decoding and processing of
the navigation signals, the local time t of the device will
be set to t = ts + dp + Tr, where ts is the timestamp de-
rived from the base station signals, dp is the aggregated
signal propagation delay (estimated or calculated using
the position information, around 30µs for 10 km), and
Tr is the local time needed for decoding and processing
at the receiver (measured time between the first bit filled
into the buffer and the moment the time is reset).

So far, we have only discussed the implications of
UDSSS on navigation signals in terms of anti-jamming.
We now further show that UDSSS equally helps to se-
cure navigation against spoofing attacks. In [14], Kuhn
showed that time-of-arrival-based navigation systems
(like GPS) can be secured against signal-synthesis and
selective-replay attacks in which the attacker inserts nav-
igation signals as they would be received at the spoofed
location. Without protection, an attacker can manipulate
the (nanosecond) relative arrival times by pulse-delaying
or replaying of (individual) navigation signals with a de-
lay of ∆, which results in a distance error c(δ + ∆) with
respect to the true location (where c is the speed of light



and δ accounts for synchronization imprecisions). The
asymmetric scheme proposed in [14] is made resistant
against these kinds of attacks by decoupling the time-
critical signal transmission from a delayed disclosure
of the applied spreading code; the first signal is spread
and hidden below noise level whereas the second signal
(spreading code along with time and position informa-
tion) is transmitted above the noise level after a delay ρ.
A replay attack can now be performed only with a delay
> ρ. By choosing ρ large enough (e.g., several seconds),
even receivers with a low-quality clock can discover the
delay in the received timestamps.

UDSSS achieves a similar anti-spoofing protection as
the scheme in [14]. Due to the steganographic proper-
ties of the UDSSS signal, the attacker can only extract
and delay individual navigation signals after having suc-
cessfully identified the used spreading sequences. Due
to a comparison of the received timestamp with the lo-
cal time, the receiver can identify signal delays that ex-
ceed a certain accepted threshold; the threshold basically
depends on the accuracy of the receiver’s clock. This
(probabilistic) approach secures against attacks in which
the attacker’s decoding takes longer than this threshold.

In contrast to the scheme in [14], which is susceptible
to DoS-attacks since data and code are disclosed above
noise level, UDSSS provides resistance against jamming
because the entire navigation signals are sent with (tem-
porarily) unknown code sequences below noise level (see
Figure 14b).

8 Related Work

The impact and detectability of jammers according to
their capabilities (e.g., broad- or narrowband) and be-
havior (e.g., constant, random, reactive) has been widely
studied [2, 15, 20, 28]. Spread-spectrum techniques such
as DSSS and FHSS are common jamming countermea-
sures [2, 20]. In [6, 8], the respective authors address
broadcast jamming mitigation based on spread-spectrum
communication. Additionally, the use of specific cod-
ing and interleaving strategies [16] can strengthen the
jamming resistance of transmitted messages. Common
to these countermeasures is that they all rely on secret
keys, shared between the sender and receiver(s) prior to
their communication. As argued in prior work [24], pre-
loading keys on devices in ad-hoc settings for subsequent
jamming-resistant communication suffers from scalabil-
ity and receiver dynamics problems. Furthermore, if
some of the receivers are not trustworthy, relying on pre-
shared keys allows malicious receivers to obtain mes-
sages themselves while withholding them for others [14].

Recent observations [4, 24] identify the lack of
methods for jamming-resistant communication without
shared secrets and propose solutions to this problem. The

solution proposed by Baird et al. [4] uses concurrent
codes in combination with UWB pulse transmissions.
The jamming resistance achieved by their scheme is
not one-to-one comparable to common spread-spectrum-
based techniques: While the attacker of spread-spectrum
techniques must have enough transmission power to
overcome the processing gain, in [4] the limiting factor
is the number of pulses that the attacker can insert, i.e.,
her energy. The solution previously proposed based on
Uncoordinated Frequency Hopping (UFH) [24] chooses
the frequencies of packet transmissions at random from
a fixed frequency band. UFH and UDSSS differ signif-
icantly in the following aspects: UDSSS is determin-
istic (apart from the randomness introduced by the at-
tacker) and its performance (the transmission latency)
mainly depends on the receiver’s processing capabilities.
UFH, in contrast, is probabilistic (even in the absence
of jamming) and its performance depends on the num-
ber of hopping channels (determined by the processing
gain). Unlike UFH, UDSSS decouples the processing
gain from the spreading uncertainty and allows to fine-
tune the scheme (without complex message fragmenta-
tions). Finally, due to the unpredictability in the message
reception, UFH is unsuitable for applications that require
accurate time-stamping of signals, as it is required for
many navigation systems.

In [29], an algorithm to estimate the code sequence
of a direct spread-spectrum sequence in non-cooperative
communication systems is proposed. This algorithm,
however, does not leverage the knowledge of the code set
used and further assumes that the same code sequence is
used repetitively. This approach is therefore not suitable
to counter targeted jamming attacks because the commu-
nication will no longer be protected once the code se-
quence has been identified by the attacker.

9 Conclusion

In this paper, we elaborated the problem of broad-
cast anti-jamming communication without shared se-
crets, which can, e.g., be used to secure navigation
systems. As a solution to this problem we proposed
a scheme called Uncoordinated DSSS (UDSSS) that
enables DSSS-based broadcast communication without
pre-shared keys. UDSSS leverages the fact that the
sender can transmit a certain amount of spread (hidden)
data to the receivers before a (reactive) jammer is able to
identify the used code and to jam the transmission. We
evaluated the performance and jamming resistance of our
DSSS scheme analytically, through a prototype imple-
mentation, and by means of simulations for single and
multiple receivers. For a state-of-the-art system (about
6000 MIPS), the expected time for a message transfer to
a group of 10 receivers takes less than 30 s for a high jam-



ming probability of 80%. We accent that this time is rea-
sonably short, given that with common (key-dependent)
anti-jamming techniques the devices would not be able
to broadcast jamming-resistant messages at all.
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Notes
1Gold- and Kasami-codes have the same correlation properties and

both approach the Welch lower bound in their cross-correlation val-
ues. However, Gold- and Kasami-codes differ in the number of codes
that can be created. While the number of Gold-codes of length N that
can be constructed is N + 2 (e.g., 257 for N = 255 and 1025 for
N = 1023), the number of Kasami-codes of length N (in the large
set) is considerably higher: ≈ 2

3
2 log2(N+1) (e.g., 4112 for N = 255

and 32800 for N = 1023) [17]. Kasami-codes are therefore more ap-
propriate for UDSSS, although even Kasami codes may have to reoccur
in multiple code sequences (if n` > 2

3
2 log2(N+1)).

2∀ci,j ∈ C, ∀t ∈ {0, 1, . . . , N − 1}, and a small ε � N , the
auto-correlation of the codes is

∑N−1

q=0
ci,j [q]ci,j [q + t mod N ] ≈

N if t = 0 and ≤ ε else, where ci,j [q] ∈ {−1, +1} denotes the
q-th value of the spreading code ci,j and ε indicates the quality of the
auto-correlation (the less the better). Similarly, ∀ci,j , ci′,j′ ∈ C, t ∈
{0, 1, . . . , N − 1} the cross-correlation is

∑N−1

q=0
ci,j [q]ci′,j′ [q +

t mod N ] ≤ ε.


