Introducing Distiller: a unifying framework for
Knowledge Extraction

Marco Basaldella, Dario De Nart, Carlo Tasso

Artificial Intelligence Lab
Department of Mathematics and Computer Science
University of Udine, Italy
basaldella.marco.1@spes.uniud.it, {dario .denart,carlo. tasso}@uniud .it

Abstract. The Digital Libraries community has shown over the last
years a growing interest in Semantic Search technologies. Content anal-
ysis and annotation is a vital task, but for large corpora it’s not feasible
to do it manually. Several automatic tools are available, but such tools
usually provide little tuning possibilities and do not support integra-
tion with different systems. Search and adaptation technologies, on the
other hand, are becoming increasingly multi-lingual and cross-domain to
tackle the continuous growth of the available information. So, we claim
that to tackle such criticalities a more systematic and flexible approach,
such as the use of a framework, is needed. In this paper we present a
novel framework for Knowledge Extraction, whose main goal is to sup-
port the development of new applications and to ease the integration of
the existing ones.

1 Introduction

Automatic Knowledge Extraction (herein KE) from natural language documents
is a critical step to provide better access and classification of documents by means
of semantic technologies. However, due to the current size of digital archives, one
cannot expect human experts to annotate such data manually. Several tools have
been developed over the past years to address this issue. However four critical
issues in state-of-the-art Knowledge Extraction systems can be identified:

— Multilinguality: roughly half of the available Web pages include non-English
text!. The large majority of Web users are non-English native speakers, and
tasks like multilingual search, adaptation, and personalization are likely to
be key features of future information access. Unfortunately KE tools show,
with a few notable exceptions, a general lack of multilingual support.

— Knowledge Source Completeness: KE systems mostly rely on a specific knowl-
edge source (such as DBpedia or Freebase) acting in a closed-world fashion
and assuming that such knowledge source is complete. This assumption is
in contrast with the open-world assumption of semantic Web technologies
and shows off its limitations when applied to texts where new concepts are

! http://w3techs.com/technologies/overview/content_language/all

often introduced, such as scientific papers. Therefore a more flexible ap-
proach open to more than one external knowledge source and compliant to
the open-world assumption seems more appropriate.

— Knowledge Overload: long texts such as scientific papers, may include a lot
of named entities, but not all are equally relevant inside the text. State-of-
the-art KE systems currently provide Named Entity Recognition but do not
filter relevant entities nor include relevance measures. On the other hand
Keyword and Keyphrase extraction systems usually do filter entities but do
not disambiguate nor link them to DBpedia or other authoritative ontologies.

— Flexibility: state-of-the-art systems tend to provide a “one-size-fits-all” so-
lution that is generally a domain independent application and, to the best
of our knowledge, none of them can be easily tailored by non-KE-experts to
fit specific domain requirements, assumptions, or constraints of each digital
library.

To overcome this issues in this paper we introduce Distiller, a KE framework
whose aim is to overcome these limitations by providing a complete, yet easily
understandable, KE pipeline, allowing quick development of custom applications
and integration of heterogeneous KE technologies.

The rest of the paper is organized as follows: in Section 2 we present some
related work, in Section 3 we introduce the key concepts of the Distiller frame-
work as well as the built-in modules, and in Section 4 we explain how to obtain
and use the Distiller. Finally, Section 5 and 6 conclude and present the future
extensions of our work.

2 Related Work

Named entity recognition and automatic semantic data generation from natural
language text has already been investigated and several knowledge extraction
systems already exist [3] such as OpenCalais?, Apache Stanbol®, TagMe [2],
BabelNet, Babelfy [12], and so on. All these systems are tailored to a specific
domain and work well in that specific domain. On the other hand several authors
in the literature have addressed the problem of filtering document information by
identifying keyphrases (herein KPs) and a wide range of approaches have been
proposed. Different techniques of KP extraction have been identified in literature
[5]. These techniques can be divided mainly in supervised techniques based on
statistical, structural, and syntactic features of a document, and unsupervised
techniques, which employ graph clustering and ranking techniques to find the
most relevant KPs in a document.

As far as we know by now these efforts, even when they brought a significant
step forward in the KP research field, rarely brought to a systematic and replica-
ble development approach to the KP problems. At the time we write, we are not
aware of the existence of an ‘out of the box’ solution able to offer a developer,

2 http://www.opencalais.com/
% https://stanbol.apache.org/

or even a less technical-minded researcher, a solution which is both easy to use
and easy to configure for the KP extraction problem. Moreover, while there is a
wide body of state of the art algorithms, just few of them are freely available to
the research community. So in this section we focus only on the KP extraction
software that is available for download on the Internet.

An example of an available solution is RAKE [14]. While there is an open
source implementation of the algorithm?, it’s a single purpose application with
little or no configuration. There is also an open source implementation of the
KEA algorithm [16] available online®, but it seems that the project has not been
updated since 2007. As for RAKE, this software is a single-purpose solution with
very little customization options. The KEA algorithm is the basis for the MAUI
software®, which offers an open source implementation of an improved version
of the KEA algorithm plus other tools for other common KE tasks such as
Entity Recognition or Automatic Tagging [10]. Unfortunately the bulk of such
useful features is part of a closed-source commercial product. Moreover, such
software is not meant to be a framework, therefore extension with new modules
and integration with existent systems are hard to develop. Finally, JATE is a
library that offers a set of KP extraction algorithms. Unfortunately, this library
is not developed as a framework, but just as a collection of algorithms.

It is also important to stress that the KE domain itself lacks in standardiza-
tion. Evaluation of KP extraction systems is difficult, since in the community
there is little agreement on which metrics should be used: some scholars use
Information Retrieval metrics [7], while others introduce new domain specific
metrics like in [15]. Moreover, as we discuss in Section 3.4, there is still no
shared terminology in the community.

Our work aims to be a step towards a wider, unifying direction: we want
to provide to the KE and KP communities an open-source, simple, and flexible
framework-based solution, which can be used for fast development and evaluation
of KE and KP extraction techniques.

3 Framework Design

3.1 General Design

In order to overcome the shortcomings of state-of-the-art KE systems we ex-
tended the approach presented in [13] and [1] and formalized it in a framework
named Distiller, whose main aim is to support research and prototyping activ-
ities by providing an environment for building testbed systems and integrating
existing KE systems.

Distiller is implemented in Java, since such language is widespread among
the research community and offers reasonable performance and multiplatform

* https://github.com/aneesha/RAKE

® http://www.nzdl.org/Kea/download.html
5 https://github.com/zelandiya/maui

" https://github.com/ziqizhang/jate

support. Moreover, since it runs on the JVM, Distiller can be used with other
popular languages such as Groovy, Scala, and Ruby®. Distiller relies on the
Spring framework to handle dependency injection allowing easy Web deployment
on Servlet containers such as Apache Tomcat.

The design of Distiller is guided by the key principle that several different
types of knowledge are involved in the process of KE and should be clearly
separated in order to design systems able to cope with multilinguality and multi-
domain issues. For example, by now we consider four types of knowledge:

— Statistical: word distribution in the document and/or in a corpus of docu-
ments;

— Linguistic: Lexical and morphological knowledge;

— Social-Semantic: Knowledge derived from external sources such as Wikipedia,
or more specific domain ontologies, possibly cooperatively developed;

— Meta-Structural: heuristics based on prior knowledge on text structure (e.g.:
knowing that scientific papers have an abstract).

Linguistic knowledge is language dependant Meta-Structural knowledge is do-
main dependent, and Social-Semantic knowledge is both domain and language
dependant. At a more practical level this principle implies that different types of
knowledge must reside in distinct modules, for instance, statistical and linguistic
analysis must be handled by different modules.

Distiller is organized in a series of single-knowledge oriented modules, where
any module is designed to perform a single task efficiently, e.g. POS tagging, sta-
tistical analysis, knowledge inference, and so on. This allows a highly modular
design with the possibility of implementing different pipelines (i.e. sequences of
modules) for different tasks. All these modules are required to insert the knowl-
edge they extract on a shared blackboard so that a module can use the knowledge
produced by another module. For example an n-gram generator module can gen-
erate n-grams according to the POS tags produced by a POS tagger module.
Since these modules work by annotating the text on the blackboard with new
information, we call them Annotators in our framework.

Implementing Knowledge Extraction tasks with Distiller ultimately is re-
duced to specifying a pipeline including the right annotators. Consider for in-
stance the task of KP Extraction introduced in Section 2. Usually such task is
divided in the following steps: text pre-processing, candidate KP generation, and
candidate KP selection and/or ranking. Distiller allows a quick deployment of
such an application with the following annotators: a Sentence Splitter and a word
Tokenizer to handle the pre-processing phase, a Stemmer, a POS Tagger and an
optional Entity Linker to annotate the text, an N-Gram Generator to generate
candidates, and Scoring a Filtering modules to filter the most relevant candi-
dates according to the annotations produced in the previous steps. The resulting
pipeline is shown in Figure 1. Since each Annotator provides only a specific kind
of knowledge, tailoring the pipeline to specific needs requires little effort. For
instance, switching to another language requires to replace only the language

8 via the JRuby implementation.

dependant annotators, namely the POS Tagger, the Stemmer, and the Word
Tokenizer. Other pipelines can be specified to implement different Knowledge
Extraction and text mining tasks such as Sentiment Analysis, Summarization,
or Authorship Identification.

Concept Unit Splitting . Candidate Entities —
Text > & Tokenization Annotation Recognition Filtering Concepts

% Word Tokenizer Stemmer N-Gram Statistical Features
e — Generator Evaluator
5 Sentence Splitter Entity linker

2 N-Gram
<Z(POS Tagger Ranker
a

E:

o Document Annotations N-Grams

e Content

o]

<

|

o

Fig. 1: Knowledge extraction pipeline. The downwards arrow indicates an anno-
tator that writes on the blackboard, the upwards arrow indicates an annotator
that reads from the blackboard.

3.2 Examples of Annotators

The framework provides out of the box a small set of annotators that allow to
build a simple pipeline for the tasks of KP Extraction and Concept Inference.
The pipeline we designed follows the feature-based approach which is widespread
in the keyphrase extraction literature [5]. In this section, to showcase the capa-
bilities of the framework, we present a set of annotations that the Distiller is
already able to produce.

There are lots of features that can be found in literature that we have not
implemented in the Distiller yet. This is not due to the fact that we don’t con-
sider them worthy or interesting enough, but, since the framework architecture
offers the capability to quickly implement an Annotator that calculates a desired
feature, our purpose is to provide a solid and reliable framework design rather
than a simple collection of algorithms. We plan, to extend this feature set in the
future, extending it also to other domains different from Knowledge Extraction
such as, for example, Sentiment Analysis.

3.2.1 Linguistic Annotators We developed wrappers for two of the most
popular natural language processing toolkits available in the Java language,
namely the Stanford CoreNLP library [9] and the Apache OpenNLP library®.

9 https://opennlp.apache.org/

We use these tools to split, tokenize, and POS tag documents. These modules
are usually the annotators at the beginning of the pipeline.

Moreover, we provide a simple n-gram generator used to generate candidate
keyphrases. This module selects from the input documents the n-grams whose
POS tag sequence corresponds to a typical keyphrase POS tag sequence; for
example NN NN is a valid POS tag sequence for this module. These sequences
are stored in a simple database in the shape of a JSON file. The developer
can then give to the n-gram generator one database file per language, and the
module is able to select the appropriate one at run time. Default pos-pattern
databases that we obtained by running a POS tagger on a corpus of manually
defined keyphrases, using the same approach as [6], are already available in the
framework.

This n-gram generator is also used to compute what we call the Noun Value
of a candidate keyphrase, i.e., given a n-gram ¢ of length n,

noun value(g) = (number of nouns in g)/(n)

3.2.2 Statistical Annotators We include in the Distiller a statistical an-
notator that provides statistical information about n-grams generated by the
n-gram generator mentioned above.

In order to illustrate how the statistical processing is performed, we introduce
some definitions. Given D a document and g a gram, we denote with |D| the
number of sentences of the document, and pos(D, g) as a function that, given
a gram, returns a list of positions of the gram in the document. For example,
suppose we have pos(D, g) = {1,3,3,5}: this means that g appears in the first,
third, and fifth sentence of the document, appearing two times in the third
sentence. This module annotates n-grams with four features:

— depth: the (relative) position of the last occurrence of the n-gram, i.e.

mazx(pos(D, g))

depth =
D]
— height: the (relative) position of the first occurrence of the gram, i.e.

min(pos(D, g))
D

— lifespan: the part of the text in which the gram appears, i.e.

height =

maz(pos(D, g)) — min(pos(D, g))
D

lifespan =

or equivalently
lifespan = depth — height

— frequency: the relative frequency of the gram in the text, i.e.

lpos(D, g)|

frequency = D]

These annotations provide us positional knowledge about the n-grams, helping
us to discriminate potential keyphrases. This kind of knowledge is widely used in
the keyphrase extraction field [5], albeit with different names or slightly different
definitions. For example, what we call height is called distance in the KEA system
[16], and it’s computed on the basis of the number of words instead of sentences.
The HUMB system [8] calls KEA’s ‘distance’ simply first position. More recently,
[4] also calls KEA’s distance first position, and moreover it defines first sentence
as we define height in this work.

We recognize that the difference in terminology may cause confusion to a
reader coping with all these definitions but, since there’s no standard terminology
in the KP community itself, it’s hard to come up with unambiguous definitions.
This remarks may be indeed useful for the KP community in order to define a
common corpus of definitions, eliminating the need for re-definition.

3.2.3 Knowledge-Based Annotators We built an annotator that relies on
TagME [2] aimed at marking an n-gram with a boolean value if it appears on
Wikipedia. We called this boolean value Wikiflag.

Using the information provided by this annotator, we’re able to identify a set
of relevant entities that appear in the document and a set of suggested entities
that are related to the ones that appear in the document. This way, we provide
a quick way for the reader to gather the relevant information of a document
without the need of reading the whole document.

We thoroughly describe the process of filtering and suggesting entities in [11].

3.3 Multilinguality

It is simple to adapt the design of a pipeline to languages different from En-
glish. Since we use components that are quite standard in the NLP community
one can use the resources that are already available online to port a pipeline
from a language to another. Let’s take again our Keyphrase Extraction pipeline
as an example. The pipeline is already designed to support English and Ital-
ian but it’s possible to support an arbitrary number of languages. In fact, the
only annotators that are language-dependent are the linguistic annotators (POS
tagger, splitter, and so on), the n-gram generator and the external knowledge
annotators. We already mentioned that splitting, tokenization, and POS tagging
are performed by external libraries such as Apache OpenNLP. To perform these
tasks in languages different from English, we already offer the user a simple con-
figuration parameter that allows him to use one of the many language models
that are already available'®. Listing 1.2 is an example of multi language sup-
port for the Apache OpenNLP wrapper in the Distiller. These models can be
used to build the POS patterns for the n-gram generator, whose multilanguage
capabilities we have already mentioned in Section 3.2.1

!0 http://opennlp.sourceforge.net/models—1.5/

Regarding the external knowledge annotators, while TagMe is available only
in Italian and English, it is possible to use one of the many similar online services
to perform the same task such, for example, Babelfy.

3.4 Evaluation

An important step of every scientific process is the evaluation of the results.
For this reason the Distiller design allows to easily build an evaluation stage for
every kind of pipeline that it can support.

As we already mentioned, the focus of the Distiller by now is on Knowledge
Extraction and, more specifically, on KP Extraction, so we designed a simple
evaluator process for this task. We have built an evaluation system for scientific
articles based on the SEMEVAL 2010 dataset. In the near future we plan to
integrate evaluation on the Inspec dataset to evaluate the pipeline on abstracts,
and DUC-2001 dataset to evaluate news articles.

For the Keyphrase Extraction task, evaluation is performed by calculating
the usual metrics of precision, recall and f-measure. Moreover, [7] recently intro-
duced two metrics derived from the Information Retrieval community, namely
the binary preference measure and the mean reciprocal rank, which are used to
take the ranking of the extracted keyphrases into account. For the same reason,
recently [15] proposed a new metric called average standard normalised cumula-
tive gain which claims to offer a even better evaluation technique for keyphrase
extraction. We use these three innovative metrics along with the usual preci-
sion, recall and f-measure in the Distiller. This way, we hope to provide a fast,
accurate, and comprehensive evaluation of the KE task in our framework.

4 Using the Distiller

4.1 Distribution and Licensing

All the code of the Distiller is available online under the Apache 2 License. The
full source code can be found on GitHub!!. Due to license constraints we can’t
include GPL licensed code in our framework. For this reason we will not include
the Stanford CoreNLP wrapper in the default release but we will release in the
future a set of GPL2 licensed annotators to overcome this limit.

4.2 A practical example

Being a Spring application, Distiller can be configured with a XML configuration
file. Each module can be specified and configured in such file and the system con-
figuration can be changed with no need to recompile the code. It’s also possible
to configure the Distiller using Java code, but since the result is the same as the
XML configuration, we cover only the latter in this paper. Listing 1.1 shows a
sample configuration snippet where the KE pipeline is defined. This pipeline is
injected into the Distiller using the facilities that the Spring framework provides.

" https://github.com/ailab-uniud/distiller-CORE

<bean id="defaultPipeline”
class="1it .uniud. ailab.dcore.annotation. Pipeline”>
<property name="annotators”>

<list>
<!— split the document —>
<ref bean="openNLP” />
<!— annotate the tokens —>
<ref bean="tagme” />
<!— generate the n—grams —>
<ref bean="nGramGenerator” />
<!— annotate the n—grams —>

<ref bean="statistical” />
<ref bean="tagmegram” />
<!— ewvaluate the keyphraseness —>
<ref bean="linearEvaluator” />
<!— infer concepts —>
<ref bean="wikipedialnference” />
<!— filter the non—interesting output —>
<ref bean="skylineGramFilter” />
<ref bean="hypernymFilter” />
<ref bean="relatedFilter” />
</list>
</property>
</bean>

Listing 1.1: A configuration snippet

Each module of the pipeline must implement the Annotator interface. An
example of Annotator is the OpenNLPBootstrapper, a module that uses the
Apache OpenNLP library'? to split, tokenize, and POS tag the document. This
annotator is defined as a bean, as in Listing 1.2, in the XML file and then passed
to the pipeline as in Listing 1.1 above.

<bean id="openNLP”
class="1it .uniud. ailab.dcore.wrappers.external.
OpenNlpBootstrapperAnnotator”>
<property name="modelPaths”>
<map key—type="java.lang.String” value—type="java

.lang . String”>

<entry key="en—sent” value="/opt/distiller/
models/en—sent . bin” />

<entry key="en—token” value="/opt/distiller/
models/en—token.bin” />

<entry key="en—pos—maxent” value="/opt/
distiller /models/en—pos—maxent . bin” />

12 http://opennlp.apache.org/

<entry key="it—sent” value="/opt/distiller/
models/it /it —sent.bin” />

<entry key="it—token” value="/opt/distiller/
models/it /it —token.bin” />

<entry key="it—pos—maxent” value="/opt/
distiller /models/it /it —pos—maxent.bin” />

</map>
</property>
</bean>

Listing 1.2: A configuration snippet

Listing 1.2 is also useful to show how a single module can be configured. Here
again we use the facilities provided by the Spring framework to set the model
file paths that the OpenNLP framework is going to use in this configuration to
split, tokenize and POS tag text.

Once configured, Distiller offers a simple and minimal interface to allow pro-
grammers to instantiate and run the application. Listing 1.3 shows how to build
a Distiller application according to the configuration file and to launch extrac-
tion from a text. It is also possible to use the Spring framework (or the wrappers
for the framework provided in the DistillerFactory class) to load and use any
custom pipeline for the distiller.

Distiller d = DistillerFactory.getDefault ();
DistilledOutput output = d.distill (’’Text to distill’’);

Listing 1.3: Running Distiller with the default configuration

The output format is an object containing ranked concepts, links to exter-
nal knowledge sources (if any) and other annotations generated along the KE
pipeline.

5 Conclusions

With respect to the four issues of KE presented in Section 1, Distiller allows
the development of applications able to overcome such shortcomings. The issue
of multilinguality is eased by the possibility of specifying a wide array of anno-
tators and to dynamically link them at runtime on the basis of the considered
language. The issue of Knowledge Source Completeness is eased by the possibil-
ity of integrating heterogeneous knowledge sources as different annotators, such
as TagME or Babelfy. The issue of Knowledge Overload, finally, is eased by the
presence of a filtering phase in which entities are evaluated with respect to their
relevance in the text. Currently we are releasing the Distiller framework as an
open source project and providing, by request, a RESTful API to access a sam-
ple application with multilingual support. Finally, we believe that the Distiller
is flexible enough to tackle complex and diverse tasks, provided that the right
annotators for these tasks are available. If an annotator for a specific problem
does not exists, however, it is possible to implement it and easily plug it in a
custom KE pipeline.

6 Future Work

Since the keyphrase ranking phase is based on heuristically calculated weights
for the features we discussed in this paper, we plan to build a keyphrase ranking
module with the possibility to use different machine learning techniques for this
task. This work is out of the scope of this paper and will be discussed in a future
work.

We also plan to include support for other languages in the Keyphrase Ex-
traction task. We'’re currently working on Portuguese, Arabic, and Romanian.

Other future work will include the development of a different kind of pipelines
in the Distiller, such as a Sentiment Analysis oriented pipeline. In order to
demonstrate this possibility we already built a simple module, which is a Java
port of the Syuzhet R package'3, which is used to detect the emotional intensity
of a text.

References

[1] Dante Degl'Innocenti, Dario De Nart, and Carlo Tasso. “A New Multi-
lingual Knowledge-base Approach to Keyphrase Extraction for the Italian
Language.” In: Proceedings of the 6th International Conference on Knowl-
edge Discovery and Information Retrieval. SciTePress, 2014, pp. 78-85.

[2] Paolo Ferragina and Ugo Scaiella. “TAGME: On-the-fly Annotation of
Short Text Fragments (by Wikipedia Entities)”. In: Proceedings of the
19th ACM International Conference on Information and Knowledge Man-
agement. CIKM ’10. Toronto, ON, Canada: ACM, 2010, pp. 1625-1628.
ISBN: 978-1-4503-0099-5. DOI: 10.1145/1871437.1871689.

[3] Aldo Gangemi. “A comparison of knowledge extraction tools for the se-
mantic web”. In: The Semantic Web: Semantics and Big Data. Springer,
2013, pp. 351-366.

[4] Mounia Haddoud et al. “Accurate Keyphrase Extraction from Scientific
Papers by Mining Linguistic Information”. In: Proc. of the Workshop
Mining Scientific Papers: Computational Linguistics and Bibliometrics,
15th International Society of Scientometrics and Informetrics Conference
(1SS1), Istanbul, Turkey: hitp://ceur-ws. org. 2015.

[6] Kazi Saidul Hasan and Vincent Ng. “Automatic keyphrase extraction: A
survey of the state of the art”. In: Proceedings of the Association for Com-
putational Linguistics (ACL), Baltimore, Maryland: Association for Com-
putational Linguistics (2014).

[6] Anette Hulth. “Improved Automatic Keyword Extraction Given More Lin-
guistic Knowledge”. In: Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing. EMNLP ’03. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2003, pp. 216-223. DOTI:
10.3115/1119355.1119383.

3 https://github.com/mjockers/syuzhet

[10]

[11]

Zhiyuan Liu et al. “Automatic keyphrase extraction via topic decompo-
sition”. In: Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics.
2010, pp. 366-376.

Patrice Lopez and Laurent Romary. “HUMB: Automatic key term extrac-
tion from scientific articles in GROBID”. In: Proceedings of the 5th inter-
national workshop on semantic evaluation. Association for Computational
Linguistics. 2010, pp. 248-251.

Christopher D. Manning et al. “The Stanford CoreNLP Natural Language
Processing Toolkit”. In: Proceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics: System Demonstrations. 2014,
pp- 55-60.

Olena Medelyan, Eibe Frank, and Tan H. Witten. “Human-competitive
Tagging Using Automatic Keyphrase Extraction”. In: Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing:
Volume 8 - Volume 3. EMNLP ’09. Singapore: Association for Computa-
tional Linguistics, 2009, pp. 1318-1327. 1SBN: 978-1-932432-63-3.

Dario De Nart and Carlo Tasso. “A Keyphrase Generation Technique
Based upon Keyphrase Extraction and Reasoning on Loosely Structured
Ontologies”. In: Proceedings of the 7th International Workshop on Infor-
mation Filtering and Retrieval co-located with the 13th Conference of the
Ttalian Association for Artificial Intelligence (AI*IA 2013), Turin, Italy,
December 6, 2013. 2013, pp. 49-60.

Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: The Automatic
Construction, Evaluation and Application of a Wide-Coverage Multilin-
gual Semantic Network”. In: Artificial Intelligence 193 (2012), pp. 217-
250.

Nirmala Pudota et al. “Automatic keyphrase extraction and ontology min-
ing for content-based tag recommendation”. In: International Journal of
Intelligent Systems 25.12 (2010), pp. 1158-1186.

Stuart Rose et al. “Automatic keyword extraction from individual docu-
ments”. In: Text Mining (2010), pp. 1-20.

Natalie Schluter. “A critical survey on measuring success in rank-based
keyword assignment to documents”. In: 22eme Traitement Automatique
des Langues Naturelles, Caen, 2015 ().

Tan H Witten et al. “KEA: Practical automatic keyphrase extraction”. In:
Proceedings of the fourth ACM conference on Digital libraries. ACM. 1999,
pp. 254-255.

