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Abstract. Traditionally, the assessment and learning science commu-
nities rely on different paradigms to model student performance. The
assessment community uses Item Response Theory which allows model-
ing different student abilities and problem difficulties, while the learning
science community uses Knowledge Tracing, which captures skill acqui-
sition. These two paradigms are complementary – IRT cannot be used to
model student learning, while Knowledge Tracing assumes all students
and problems are the same. Recently, two highly related models based on
a principled synthesis of IRT and Knowledge Tracing were introduced.
However, these two models were evaluated on different data sets, using
different evaluation metrics and with different ways of splitting the data
into training and testing sets. In this paper we reconcile the models’ re-
sults by presenting a unified view of the two models, and by evaluating
the models under a common evaluation metric. We find that both mod-
els are equivalent and only differ in their training procedure. Our results
show that the combined IRT and Knowledge Tracing models offer the
best of assessment and learning sciences – high prediction accuracy like
the IRT model, and the ability to model student learning like Knowledge
Tracing.
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1 Introduction

In many instructional settings, students are graded by their performance on in-
struments such as exams or homework assignments. Usually, these instruments
are made of items – questions, problems, parts of questions – which are graded
individually. Recent interest in online education, such as Massively Open On-
line Courses, promises large amounts of data from students solving items over
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time. The assessment and learning science communities offer two paradigms to
model such data. Traditionally, the assessment community relies on Item Re-
sponse Theory (IRT) [12] which infers individual differences amongst students
and items, but it does not account for student learning over time. The learn-
ing science community uses Knowledge Tracing [2] to estimate skill acquisition
as a function of practice opportunities. Although Knowledge Tracing captures
student learning, it assumes that students and items do not vary in abilities or
difficulties – any two items involving the same skill are assumed to be equivalent.

Empirically we know that neither models’ assumptions are correct – these
two paradigms are complementary. Earlier attempts towards unifying these two
paradigms within the Knowledge Tracing framework only individualize students
[9, 10, 16] or items[4, 11, 13] but not both. It is only recently that serious
efforts have been made to integrate both student and item effects into Knowledge
Tracing. Specifically, two highly related models based on a principled synthesis of
Knowledge Tracing and IRT [3, 6] were proposed. The two models were evaluated
on different data sets, using different evaluation metrics and with different ways
of splitting the data into training and testing sets. In this paper we reconcile the
models’ results by presenting a unified view of the two models, and by evaluating
the models under a common evaluation metric.

The rest of this paper is organized as follows. Section 2 describes the two
recent methods that unify Knowledge Tracing and Item Response Theory. Sec-
tion 3 provides empirical evaluation. Section 4 concludes.

2 Methods

Recently, two models were proposed independently which synthesize Knowledge
Tracing and IRT: FAST [3] and LFKT [6]. Although the two models are described
in somewhat different terms, they are nearly equivalent, with the key difference
being their training method. We now present a unified view of the two models,
and then explain their parameter estimate procedures.

2.1 Model Structure

Figure 1 uses plate notation to describe IRT, Knowledge Tracing, and the com-
bined model. In plate notation, the clear nodes represent latent variables; the
light gray nodes represent variables that are observed only in training; dark
nodes represent variables that are both visible in training and testing; plates
represent repetition of variables. We omit drawing the parameters and priors.

Figure 1a shows the plate diagram of the Rasch model, the simplest IRT
model. Rasch treats each skill q independently, and can be modeled using logistic
regression with binary variables indicators for each student i and each item j. The
regression coefficients θq and dq of the binary features can then be interpreted as
student ability and item difficulty, respectively. The binary observation variable
(yq) represents whether the student gets an item correct:

p(yq) = logistic(θq,i, dq,j) =
1

1 + e−(θq,j+dq,i)
(1)
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(c) Combined IRT and KT

Fig. 1: Plate diagram notation for different student models

Figure 1b describes the Knowledge Tracing model. Knowledge Tracing uses
Hidden Markov Models (HMMs)to infer the binary latent student knowledge
state (kq,t) indicating whether the skill has been mastered at the tth learning
opportunity of skill q. The transition probabilities between latent states are often
referred as learning and forgetting probabilities, and the emission probabilities
are commonly referred as guess and slip probabilities. The binary variable yq,t
represents whether the student gets an item correct:

P (yq,t|yq,1...yq,t−1) =
∑

l∈{mastered,
not mastered}

emission probability︷ ︸︸ ︷
P (yq,t|kt = l) ·P (kt = l|yq,1...yq,t−1) (2)

Figure 1c shows the combined model. It replaces the emissions with IRT:

P (yq,t|yq,1...yq,t−1) =
∑

l∈{mastered,
not mastered}

IRT︷ ︸︸ ︷
logistic(dq,it , θq,jt , cq,l) ·P (kt = l|yq,1...yq,t−1) (3)

Here, the logit is parametrized by the difficulty d of the item i, the ability θ
of student j and a bias c that is specific to whether the student has mastered
the skill. Both Knowledge Tracing and IRT can be recovered from the combined
model with different choices of parameter values. For example, when the abilities
and difficulties are zero, the combined model is equivalent to Knowledge Tracing.
When the bias terms are the same (i.e., cnot mastered = cmastered), we get IRT.

2.2 Parameter Learning

We now briefly review two recent proposals to learn the combined model. A
thorough discussion can be found elsewhere [3, 6]. González-Brenes et al. [3]
use a recent variant of the EM algorithm [1] that allows learning HMMs with
arbitrary features. Although the original framework allows general features to
be incorporated into Knowledge Tracing, the model becomes equivalent to our
combined model when limiting the features to IRT features only.
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Table 1: Basic Dataset Statistics

Geometry Physics Statics QuizJET

Trials 5,104 110,041 189,297 6,549

Students 59 66 333 110

Problems 139 4,816 1,223 95

Skills 18 652 156 19

Mean Seq. Length 8.0 4.5 6.0 4.7

Mean Correct 75% 83% 77% 60%

Alternatively, Khajah et al. [6] use Bayesian estimation techniques to learn
the combined model. They used slice sampling, a MCMC algorithm that gener-
ates samples of the joint posterior distribution of the model. This allows using
priors on abilities and difficulties which can be used to generalize to unseen stu-
dents and items. Also, their model allows to fit student ability parameters across
different skills – using data from a student’s performance on one skill to predict
their performance on a different skill.

3 Results

We evaluate our student models by how accurately they predict future student
performance. We operationalize predicting future student performance as the
classification task of predicting which students solved correctly the items in a
held-out set. We evaluate them using a popular machine learning metric, the
Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC)
curve. The AUC is an overall summary of diagnostic accuracy. AUC equals 0.5
when the ROC curve corresponds to random chance and 1.0 for perfect accuracy.
We report the 95% confidence intervals with an implementation of the bootstrap
hypothesis test method (http://subcortex.net/research/code/), a method
that corrects for the non-independence of the points of the ROC.

We use data from four different intelligent tutoring systems: the Geometry
Cognitive Tutor [7], the Andes Physics Tutor [15], OLI Statics [14] and QuizJET
Java programming tutor [5]. The first three datasets are available on the PSLC
Datashop [8]. Table 1 shows a summary of their descriptive statistics.

We divide each dataset into skill-specific subsets consisting of the sequence of
trials for each student involving items that require a particular skill. We refer to
these sequences as student-skill sequences. If multiple skills are associated with a
item, we treat the combination of skills as one unique skill. The last 20% of trials
from each sequence were placed in the testing set. Thus, generalization to new
skills is not required. For each trial, we compute the prediction (probability of a
correct response). Predicted outcomes in the test set are then used to calculate
the AUC.
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Bar heights in figure 2 are the AUC values for each model and error bars rep-
resent 95% confidence intervals. We evaluated the Bayesian and Maximum Likeli-
hood versions of knowledge tracing, IRT, and the combined model. On the small-
est dataset, geometry all models perform similarly during testing. On the next
two larger datasets, QuizJET and physics, IRT and the combined models per-
form similarly, beating knowledge tracing. Neither IRT or the combined models
emerge as a clear winner. However, on the largest dataset, statics, the Bayesian
combined model outperforms all other models significantly. In this dataset, IRT
trained using Maximum Likelihood beats the Bayesian version, which might be
due to the effects of strong priors on student abilities and item difficulties in the
MCMC-trained version. This would also explain why the Bayesian IRT would
gain advantage in smaller datasets where the priors influence the most.

In three datasets, the Bayesian version of Knowledge Tracing beats Maximum
Likelihood. Our hypothesis is that MCMC training used in Bayesian estimation
is more effective at avoiding local optima. We do not think it is due to the use
of priors, because we used uninformative priors.

We hypothesize that the reason why the combined model does not outperform
IRT is because of the order in which items are presented to students. Specifically,
if the items are presented in a relatively deterministic order, the item’s position
in the sequence of trials is confounded with the item’s identity. IRT can exploit
such a confound to implicitly infer performance levels as a function of experience,
and therefore would have the same capabilities as the combined model which
performs explicit inference of student knowledge state. To investigate this, we
compute the mean order in which items are presented to students. In Figure
3, the horizontal axis ranks item indices by their mean presentation order, and
the vertical axis is the mean order in which items are shown to students. Flat
horizontal lines in this plot suggest random item ordering but they may also
confound the case where students are assigned to only one item from a set of
items. On geometry, we don’t see any flat sections which suggests fixed item
ordering. Next, the QuizJET dataset exhibits periodic flat sections, but these
could be due to students being assigned to single specific items out of sets of
items. On the physics and statics datasets, we see a flat line followed by a
curve which suggests an initial random assignment of items followed by more
structured item ordering. So, there is less information overlap between student
learning and item difficulties in the physics and statics datasets, thereby allowing
the combined model to put its extra parameters to good use. We plan to carry
out more rigours tests of this conclusion in the future.

One of the goals of intelligent tutoring systems is to personalize learning. This
requires models that accurately estimate the student’s knowledge over time,
which is possible with Knowledge Tracing and the combined model, but not
with IRT. However, Knowledge Tracing assumes that all items within a skill are
equally difficult. It also assumes that all students within a skill share the same
initial level of knowledge, learning rate, guessing and slipping probabilities. This
may lead to inaccurate student learning estimates which reduces the efficacy of
an intelligent tutoring system. To investigate, we calculate the estimated learning
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Fig. 2: Test set AUC scores of six models on four datasets. Higher values indicate
better performance. Error bars correspond to 95% confidence intervals.

of a student as the probability of mastery at the last practice opportunity minus
the probability of mastery at the first practice opportunity for each student-skill
sequence (p(kT = master)−p(k0 = master)). A value of 0 indicates no difference
whilst a value of 1 indicates maximum difference. Figure 4 shows the mean
difference in the estimated student learning over all student-skill sequences. For
clarity, we omit to draw the estimate of IRT, which assumes no learning occurs.
The combined model generally gives higher estimates of student learning than
Knowledge Tracing. This suggests that item and student effects are not zero
within a skill, which violates the Knowledge Tracing assumptions. Hence, the
learning estimates produced by the combined model are more trustworthy than
Knowledge Tracing.

4 Conclusion

In this paper we investigate two recent alternatives that integrate Knowledge
Tracing and IRT. We discover that both models are in fact equivalent and differ
only in their training procedure – using either Maximum Likelihood or Bayesian
Estimation. We compare both training procedures, Maximum Likelihood and
Bayesian estimation, using the same four datasets, cross validation splits and
evaluation metric. We find out that both training methods have similar perfor-
mance, with a small advantage to the Bayesian method in the largest dataset
we used. Future work may investigate why this is the case. The combined model

PALE 2014 (Edited by M. Kravcik, O.C. Santos and J.G. Boticario) 12



Fig. 3: Mean presentation order for each item in all four datasets (plates). The
horizontal axis ranks item indices by their mean presentation order. The vertical
axis is the mean order in which items are shown to students.

only outperforms IRT in one dataset. In future work we will investigate whether
the lack of improvement is due to a confound of item identity and position in
the sequence of trials when nearly deterministic trial sequences are presented

We find that the combined method persistently outperforms Knowledge Trac-
ing, and unlike IRT, it is able to model student learning. Future work may evalu-
ate how useful the combined model is for personalizing learning in an intelligent
tutoring system.

Fig. 4: Boxplot of the estimated student learning of Knowledge Tracing and the
combined model. We omit IRT, because it always assumes no learning.
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Yacef, Osmar R. Zäıane, Arnon Hershkovitz, Michael Yudelson, and
John C. Stamper, editors, Proceedings of the 5th International Confer-
ence on Educational Data Mining, pages 118–125, Chania, Greece, 2012.
www.educationaldatamining.org. URL http://educationaldatamining.

org/EDM2012/uploads/procs/Full_Papers/edm2012_full_11.pdf.
[10] Zachary A. Pardos and Neil T. Heffernan. Modeling individualization

in a bayesian networks implementation of knowledge tracing. In Pro-
ceedings of the 18th international conference on User Modeling, Adapta-
tion, and Personalization, UMAP’10, pages 255–266, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-13469-6, 978-3-642-13469-2. URL http:

//dx.doi.org/10.1007/978-3-642-13470-8_24.

PALE 2014 (Edited by M. Kravcik, O.C. Santos and J.G. Boticario) 14



[11] ZacharyA. Pardos and NeilT. Heffernan. Kt-idem: Introducing item dif-
ficulty to the knowledge tracing model. In JosephA. Konstan, Ricardo
Conejo, Jos L. Marzo, and Nuria Oliver, editors, User Modeling, Adaption
and Personalization, volume 6787 of Lecture Notes in Computer Science,
pages 243–254. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-22361-7.
doi: 10.1007/978-3-642-22362-4 21. URL http://dx.doi.org/10.1007/

978-3-642-22362-4_21.
[12] G. Rasch. Probabilistic models for some intelligence and attainment tests.

In Paedagogike Institut, Copenhagen., 1960.
[13] Sarah Schultz and Trenton Tabor. Revisiting and extending the item diffi-

culty effect model. In In Proceedings of the 1st Workshop on Massive Open
Online Courses at the 16th Annual Conference on Artificial Intelligence in
Education, pages 33–40, Memphis, TN., 2013.

[14] Paul Steif and Norman Bier. Oli engineering statics - fall 2011,
February 2014. URL https://pslcdatashop.web.cmu.edu/DatasetInfo?

datasetId=507.
[15] Kurt VanLehn. Usna physics fall 2006, February 2014. URL https://

pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=126.
[16] Michael Yudelson, Kenneth R. Koedinger, and Geoffrey J. Gordon. Indi-

vidualized bayesian knowledge tracing models. In Artificial Intelligence in
Education - 16th International Conference (AIED 2013), pages 171–180,
Memphis, TN, 2013. Springer.

PALE 2014 (Edited by M. Kravcik, O.C. Santos and J.G. Boticario) 15




