Computer Science > Robotics
[Submitted on 19 Sep 2024]
Title:Infrastructure-less UWB-based Active Relative Localization
View PDF HTML (experimental)Abstract:In multi-robot systems, relative localization between platforms plays a crucial role in many tasks, such as leader following, target tracking, or cooperative maneuvering. State of the Art (SotA) approaches either rely on infrastructure-based or on infrastructure-less setups. The former typically achieve high localization accuracy but require fixed external structures. The latter provide more flexibility, however, most of the works use cameras or lidars that require Line-of-Sight (LoS) to operate. Ultra Wide Band (UWB) devices are emerging as a viable alternative to build infrastructure-less solutions that do not require LoS. These approaches directly deploy the UWB sensors on the robots. However, they require that at least one of the platforms is static, limiting the advantages of an infrastructure-less setup. In this work, we remove this constraint and introduce an active method for infrastructure-less relative localization. Our approach allows the robot to adapt its position to minimize the relative localization error of the other platform. To this aim, we first design a specialized anchor placement for the active localization task. Then, we propose a novel UWB Relative Localization Loss that adapts the Geometric Dilution Of Precision metric to the infrastructure-less scenario. Lastly, we leverage this loss function to train an active Deep Reinforcement Learning-based controller for UWB relative localization. An extensive simulation campaign and real-world experiments validate our method, showing up to a 60% reduction of the localization error compared to current SotA approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.