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ASTRACT

Inductive reasoning is an important way to generate knowledge
from the propositions reflecting facts or directly from data We
intend to extract new knowledge in the form of definitions given as
fixed point equations. An appropriate fixed point theory is outlined
in favour of our aim. This theory suggests the so called generative
fixed point equation system as the form of hypothesis that we are
looking for. The defining formulas in these equations use only
bounded quantifiers but the relation to be defined may also
negatively occur. An inductive inference method is presented as to
find the hypothetical equation system from the increasing set of
experimentel data such that its solutions would fit all the
information

1.INTRODUCTION

Inductive reasoning is an important way to generate knowledge
from the propositions reflecting fects e.g. propositions describing
experimental results. The knowledge to be extracted from factual
propositions or date is to provide e general characterization of these
factual data. This characterization may be a law or a regularity
which describes some basic interrelation among factual data
(cf (Finn and Gergely 1984), (Gergely and Szabo 1986)). The
process of discovering this regulerlty is but e leerning process
which aims to acquisit new declarative knowledge (cf.(Cerbonell,
Michalski and Mitchell 1983)). This new declarative knowledge may
be also in the form of a general rule generated from examples that
correspond to factual data (cf.(Ang1uin and Smith 1983)) Therefore
the subject of this paper 1s connected with the field of machine
learning and inductive inference which belong to the mainstream of
Al research As it is known (e.g. from (Angluin and Smith 1983))
the majority of Inductive methods defines the regularity in question
as e recursive function From the point of view of logic this means
that these methods use the standard model of arithmetics as to model
the reality and data obtained about the letter and they select one
recursive function and identify the regularity with this function
However this approach is not the best if we eim to derive new
knowledge. Therefore we think ebout such on approach which
approximate the regularity step by step without the preconception of
recurslvity. The selected recursive function 1s a new one within the
standard model of arithmetics. To have it as a part of our knowledge
it should be defined by the use of a formal language, i.e. the
regularity should be defined by axioms obtained during the inductive
procedure. These axioms already extend our knowledge supposed also
to be axiomatical 1y given.

A definition is of the form R{x}=¥{x} where R is the new
symbol to be defined and ¥ is the defining formula, if ¥ doesn't
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contein the new symbol R then the definition is seid to be explicit,
otherwise it is implicit. The implicite definitions are the so called
fixed point equations Depending on the form of the defining formula
there exists en effective procedure to unfold the defined symbol It
provides the latter with a fixed point of the equation which is but a
new descriptive knowledge obtained from factual data We aim to
develop an inductive method which builds up the implicit definition
of the regularity or of the general rule in question in the form of a
fixed point equation Of course, we do not expect to design a method
which provides the searched fixed point equation at once, but we are
looking for a procedure which approaches the definition of
regularity step by step by discovering its different properties

This agrees with the fact that all fixed points (solutions) of a
fixed point equation are of the same properties, eg. they are
symmetric The fixed point equation R(x,y)R(y,x) is such an
example that the solutions are but the symmetric relations If such
data arrive which don't fit the definition of the property established
earlier then the description is either to be modified or rejected
Thus, step by step, we may find the constituent properties that the
required fixed point equation can be built up from We aim to develop
a method which reaches the required fixed point equation from the
increasing set of factual data considered as elements of some fixed
point and by combining the equations corresponding to these
properties into the final equation. We require from the final
equation that it fits all factual data even those which may appear
sometimes In the future. If it is so then the hypothesis can be
falsified. Note that the definition, which describes the regularity, is
obtained in a certein moment of time on the base of the data arrived
up to this moment. However the new data arrived after that moment
may not fit the hypothesis, i.e. the letter will be falsified. Of course,
we cannot expect a hypothesis in the definition form to be verified by
using only experimental data. Verification is possible only w.r t.
some knowledge. Since we are interested in the hypothesis generated
on the base of pure experimental data we require felsiflcabllity.
These formulas are just the universally quantified formulas. They
can be transformed into a special kind of fixed point equation
systems on the right hand side of which the defining formula may
use only existential quantifiers beyond bounded quantifiers. So we
are looking for the hypothesis in the form of implicit definition
expressed as such a type of fixed point equation. Having a fixed point
equation on effective way is required to find its solutions.

It Is known that if the defining formula contains the definable
symbol only positively (i.e. not in the scope of negation) and it has
only existential quantifiers then there is an effective method to
obtain the least solution of the equation (see (Oergely and Ury
1983)). However, the restriction on the positive occurence of the
definable relation symbol is too strict for us since negative
statements ere also informative in inductive inferences. le. if e



relation doesnt hold In a given situation then even this has
information content for us. Therefore we need a fixed point theory
which allows to work also with negation

We develop such a theory in the next section. The inductive
inference method of building up appropriate fixed point equation
system as hypothesis is given in Section 3. The defining formules in
this equation system will use only bounded quantifiers. Note that this
Is a subcase of the exlstentlally closed defining formulas. Taking into
account the framework of recursive function theory we note thet oil
primitive recursive relations can be defined by the formulas of the
considered case.(see(Oergely and Szab6 1986)) For the majority of
problems with practical interest the relations to be found can be
defined by such a hypothetical implicit definition An example is
given in Section 4.

2. QUAS| EQUATION SYSTEMS
le use ¢ first order language of o given
alphabet (similarity type) & and a given

constructive model by which we interpret the
foctual date. The given similarity type is
extended by nes symbols shich we correspond to
the obtoined aoiution of the hypothetical fixed
point equation.

For the saoke of sisplicity, further on, we
use the longuage of arithmetics shich contoins
two binary relation sysbols equality (=) and
*less then® (<} and teo constant sysbols 0 and

1 and three binary function symbols +, - and

sxponantion t.The standord wmode! R  of
gritheelics is considersd as the required
constructive wsodel shers wa dencte the

corresponding functions and relat ions
sizilorly., Ue aiso ollos the usage of other
recursive functions and relations on notural
nuabers N (={0,1,2,_}). Let us ses how nes
relation symbols can be introduced into the
signature, Let HI,-'Rn denots nes relotion

syshols of arlty k¢,-,k,, respectively. Ue
srite P(x) to indicate that the free variables
of ¥ ore among x=xq,_,x,. If we write ¢

sithout x then [t means that it hoa no free
vorjohles.

A forsule ©(x,y) is celled finite bounding
forauig w.r.t. x it for any fixed bER" the

set { o | B S(x,y)o,b]} is finite. Lot BF
be o fixed recursive set of finite bounding

forsulas. He introduce shorthaonds

W[e(x,y)1f (x,y) for Ix(&(x,y) &¥(x,y))

¥x[& (x,9) 1P (x,y) for ¥Wx(& (x,y)-+P(x,y))
where we syppose that G (x,y} € BF, l.e. we
bound the domain of quantification. Therefore
further on we use the nototions 3x[(8(x,y)] and
¥x[8(x,y)] os quantifiers and call thes bounded
quontifiers.

fi, The set

foraulos that
(i) containe otomic forsulos among which rela-
tion sysbole R|,_,Hn to be definad can aleoc

8,(Ry,-,R,) I3 the feast set of

occur;
(1i) 1s closed under connective &,V,-;
(111) is closed under bounded quantifiers
fB(x,y)] and Vx[elx,y)] for any
8{x,y) € BF.
B, The set ZI(HP-,H") ( ‘1(“1,_,3") ) Is

the least set of formulas that
(i) contains a,(Ry,.,R ) as subset;

{ii) is closed under connectives &V,

{(iti) is clossd under bounded quontifiers;

{iv) is closed under existential {universal}
gquantifier.

R totol solytion of o formulo e ¥,(Ry,..R))

is said to be a set of interpretations §y,-,s,

of Ry,-,R, (n B for which (R, g,_,8,)0™ 7

holds. Let TS5{%) be the set of all total
solution of "%

The gonfigurgtion space of Ry,_,R, denoted

as TS(R;,_,R.) consist of all pairs (i,a),
where I=1,_,n ond oeNM. Note that CS(Ry,-,R,)

provides all the poassible interpretations of
the relation sysbols By, _,R on N. Let

HD* () :={(i,a)eC5(Ry,_ A ) )

for all (gy,-,9,2€T5() (n,s‘,_,sn)" 7}
MD~():={{i,a)eCS(Ry,_,R ) |

for al} (8y,-,8,)6TSCL) (M, 8,_,3, )% )

Let UB(T):=UD*(?)uMO™(7) denote the gpll-de-
fined port of CS{Ry,-,R,) defined by 2,
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THEDRER 1. There exist on algorithm which,
for any formula TeX,(A;,_,R,), terminates if

1S{")=8, otherwize it enuwerates uo*(?) and
un={(1),

Let ?i(li), *i(zi) € 2|(H1,_,Rn), shere z;

ore k; long varioble tuples.

Rylzy) & Yy(xy)
R} ¢ Hixy)

Az & Ylzn)

Pnln) &~ Yn(zg)
is sald to be a .
Throughout thls chapter et = denote o quas!
equat lon system. e conslder it as the
conjunction of the implications, where each z,

is bounded by @ universal quantifier. So = ¢
€ Ii{R;,_,R) since C=¥u'tv-¥ and ~Ixfayx-f .

Let ‘P(x)€ E((R),_,R ) with x is » tuple and
aH® be fixed. An element (j,b) of CS(Ry,-.A,)

con be for ‘Pla] dencted as
'(",b)GIH(‘P(x),l) iff & is such an element of

i that Rj(b) takes part in the deteralnation
of the truthualue of the formula ¥la/x].

;EEJ.H.L'LI.EH_L For a given quosi equation
system = the dopendency relgtion > over
CS(Ry,-,,) is defired as follows:

(Lad—g (j,0) iff (5,0)¢ IN(Pi(z;),0) or
(j,.)‘l“(‘fi(!i),l).

DEEIHITION 3, The quasi squation systes =
is  peduced to an irrefiexive partial
ordering » over CS(Ry,-,R,) Iff for all

(1,0),(),b} € CS(Ry,_,R)) If (i,@)>m(},b) then
(1,8)%(j,0).

The ordering > aliows us not to dafine the
truthvalue of Rj(w) ehile defining the

truthvalue of Bj(b), if (i,8)»(j,b).

Ue also noed that the forsulas  P;(z;) and
Hi(z;) (i=1,.,n) of = not be true at the same

tise i.0.9(z)) and %(z;) are to be giajunct.

034  REASONING

JHEOREN 2. |f o quas} equatlon systes = s
reduced w.r.t. an irreflexive partlal ordering

and it satisfies the disjunction property, then
T5(=)w0.

THEQREW 3. There exists an w-type
soii-ordering > over CS(R(,_,R ) which ie

explicitiy definable by an A -forauia and for

.which, for any foraula QGI,(H‘,,,HH), a quasi

equotion system =, can be constructed that ia
peduced w.r.l. this % ond it satisfies the
disjunction condition, such that if T5{")*0

then TS("2)=T8(:2).

Let l]n(R|,..,Hn) denote the set of quosi

equot lon systems shich ore reduced v.r.t. some
Irreflexive partial ordering » and the foraulos
f.(z;),;(z;) of shich belong to 8o(Ry,-)Rp).

Since the implications R;(z;) « ¥, (z;) ond
~R;(z;} ¢~ ~f;(z;) con be sritten in the fora
of R{z;)e>F;(z;), it is colted gayivelont
type equation. EQO(HI,_,Rn) denotes the set of
these eguation systeas of Uo(Hi,ﬂ,Hn) shich

consist only of equivalent type equat ions and
are reduced w.r.t. sose well-founded ordering.

THEQRER 4. 1f =€EQ,(R),_,f,) then it has

one solution exactly, i.e. cord{TS(Z))=1.

ordering > w.r.t. which it is reduced i3
pecursive and well-founded, then HD*(Z) and

W~ (=) are recursive sets.

DEELMITION 4. fn irreflexive well-founded
ordering » over CS(HI,_,HH) is said to be

ngtyral §ff for all i,j*1,_,n one of the
foliowing conditions holds:
(i) (i,ﬂ]a—laki)>“(jab|a-—|bkj)
for all ay,-,0y, 'bl’-'bk, & N;
“i) (i"'i'-"'kl) *(j'b“"’bkj) if
D,P(-l) b4 bﬂ]) 6.'1.?0 T(i)f{i,_,kli for
any i=1,_,n.)

If the ordering » is natural then instead



of Q4(By,-,R,) ond EUO(H‘,-,Hn) ne  srite
NQ,(R{,-,R,) and NEQ,(R,,.,R,), respectively.

If we intend to determine the properties of

the observed relations Ry,.,R,, then we aiso

need sowe auxiliory relotions R ,q,..R .4

defined by equivalent type equotions, where the
observed relotion sysbols connot occure.
Hamely, we have the following, so0 cailed,
genergtive gyasj equation systcw :

B« fy (y,o,Red
Ry = ¥y Ry Byed)

R, +~ 'fh Ry, Fned)
Sy = ¥ (o Ryed)
nno]":" ‘f,.n!ll..m-.l\,.d)

fned™® Frad(Roer - Roed)

DEFIMITION S. A generative quosi equation
system is said to be paturgl {dencted their set
as HGQ,(Ry,-,A.}) if it is reduced s.r.t. an

irrefiaxiv ordering > for shich (i,e) > (j,b)
iff i,j€{1,_,n} and (i,@)>u(j,b);

or i,j € {n+1,_,n+d} and (i,a) > (j,b);

or 1€ {i,_,n} ond j€ {n+},_,n+d)
for all (i,a),(j,b) € CS{Ry,-,R,,4); where =,

Is an wo-type ordering on CS(Ry,..R ) ond >
is o notura! ordering on CS(R.,;,.,Rpeq).

THEQREN 6. For any (= € ENQ(Ry,-,R;) there
exists o % & HGQ,(R(,-,R,) such that their

solutions for Ry,_,R, are the sawe, shere asn,

3.IHDUCTIUE INFERENCE RLCOBITHM

Let us consider noe the theory of inductive
i nf erence, espec i a 11 y hov we d i scover
properties from observations, we generate
hypotheses in the fori of natural generative
quasi equation systeis corresponding to the
given set of observations. For simplicity's
sake we give a method for the recognition of
only one observed relation not. It can be
generalized for lore easily.

Let functlion X:H'~H® be the dota
presentation i.s. 3 describes o seguence of
observations, where N* denotes the set of ali
positive Integers. More precisely, if ws wsont
to recognize an m-ary relation A, then we get
information AI%,] ot the n-th step, shere

RI, )= ({1}, R(X(1))>; . ;<%(n) ,R(%X(n) 1}

Since the solution of the notural quoai
equations for the ouxiliory relotions are
uniqus, so they ore enumerable, therefore
instead of giving the defining equations for
ouxiiory relations it is sufficient to refer to
thes by nomes of o fixed ancoding. Let ¥ be o
function, enumerating all the forsulas of
4,(R) with free uoricble z, and let P(i)

denote the [-th elewent of the enumeratlon,
However, (f we hove some knowledge in the fora
of quasl equations with A (R) forsulas on the

right hand aide concerning the observad
relation, then we toke thess formulas ot the
begirning of the enumeration. Of course, the
enumerated formulas are composed of encoded
noses of the ouxiliary relotions and of the
symbol B of the observed relation, shere, if
R(t) appears in o formula, then t is bounded by
z, in order to satisfy the condition of the
reduction.

Let *." denote the concatenation of finite
sequence. Let the generated hypothesis for

information  R[X,] be characterized by K,
shich is o finite sequence of subhypotheses,
wore exoctly H, = (°In!"ln)"'(“k:"’k:)' shere
a;"€ # and 2, efn,1}. H, corresponds to the
following defining quosi equations:

R(z) «~ vV (PlaMe( & -Pla;")

'!ﬂikn 1cjei
and and
M- ijnIO
-A(z) « Vv (Plo™M2( & '-CP(GJ-")))
18§ Sk, 1¢)<i
and and
O'M aj'\-l

Let Z(H,) denote this quasl equation system to

H,. Here (a;",5;") iz o subhypothesis shere a;"
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refers to Plo;"} ond 3" determines the

equot iona where this forsula occurs pesltively.
The occurences of negated forms of thess
foreulos quorontee the fulfilwent of the
criterlon of disjunctivness.

Let T and F denote “true” and “false®
respactively.

Ue soy thot H=(0y,8;)._.{ay,3) provides y
for x,if for all geTF(2(H)) hold o(x}=y, where
ye{T,F}. Let Fr(H,i1) denote the left {rogment
of H, of lenght i, that Is (0y,2().-.(g;,2;).
If | is greoter or equal to length of H, then
let Fr(N,i)=H. Let “e” dencte the sapty H i.e.
if length of H is D,

Let X :={X{1) | I<ign }. We say that H

matchea RI%,] on the set MH,RIX)) if
H(H,A[X, J)={xeX | K provides A(x) for x}; ond

H dpea not motch R[] on the set M(H,AI%])
if ACH, AP D)= (X,n WBRCHYI) \ NEH,RIX, D).

The generotion of hypotheses occurs
sinilarly to the origine! emmeration method
introduced by Gold (Gold 196?). Informally:

0, Ue stort with the emspty hypothesis {or
if we hove some knowledge in the fors of quosi
equat jon systes aith forsulas fros 4,(A), then

se stort eith thie quasi equation systes as
hypothesis);

1, We do not change hypothesis if prouldes
the result correctly for the  next
ovsarvotion;

2, If se have no subhypothesis fros Hoot

for the next observation X(n}, then se toke
the first nes index i for shich Ho-q1.(i ) is

consistent with R(X.] for =0 or 2=1 ond
attach (i,9) to the end of H,_;
3, f soss of the subhypothesis of H _,

contradict the next obhseruation, then se dalete
thes shile the rest of H, controdicts R0, ),

and we repeat this procedure untii the resulted
hypothesis wil! be consistent with ail of the
observat lons.

936 REASONING

Wo want that the hypothesis H, be consistent

elth the observations at every step i.s. if
g€TS(T(M,)) then g(x)=R(x} for al} x € X,

Furthersore, we would iike that the sequence of
the relation sets TS{(T(H,)) converge to the

relation to bs recognized.

E(H,l) will denote the set of rejected or
used Indices ot the [-th atep ond belong to H.
For every posaible hypothesis H ond for eony |
let ©(H, i) be empty at the beginning. This T
infinite matrix wlil help the backtrack of the

procedure.

0, If we hove knowiedge in the form
R(z) + P(2)
~f{z) « Y{(z}
then let P(0)=(z) and K1)=Y(z) as ee said.
So
if we do not have knowledge;

e
Ho'{ (B,1).{1,0} othereise.

For n2l:
1, 1f MCH,_y,A[X,))= X, then Ho:<H _, ond let

E(Hn.n) :-E(H,H n-1).

2, f Mn) & UO(Z(H, ) then Hy:=H _,.(a,d)
where o=win{i€C,130€{0,!} such that X =
=N(H,_;.(1,0), RIX D)}
shere Cn-H'\E( Hy-1:0-1); and
tif Ko=M(H_y. (0, 1), R0%,
2" {IJ otherwise.

in this case fet E(H",n):-f(lln_l,n—w vial ond
tet E(Hn_pn]:-ﬁ(ﬂn_‘,n-l) ")
vl 1N 1 i & H(H,_{.(i,0),R0%,])*8 &

& fitH,_q. (i, 1),R0% )0 }.

3, 1f %(n)€ N(H,_;,R[X,]) then we cannot tell

shich subhypothesis {s to be blamed. So we
start  out to find the wrong subhypothesls,



beginning the search with the 1-st one.
Therefore we prefer to save the subhupotheaeg
generated earlier. [n this woy ee’(] obtain H,

frow Hn_1*(0'n-l,01n-1}._.(ﬂkn_l,akn_l). More

precisely:

"n :=H shere

N, Knu
L[ e i TiCGay™ 1,01, RI%, Ie;
s { (u1n'l,b|"'|) othersise;
and for 1<I<k, 4

. {H;,n_, TR (AL A R TE & L
P H;‘n_l.(ai“",bi“'l) otharsise.
Furthersore

- {9 if H;‘J|=e;

m {01“'1} otherwise,

and for 1<igk _,:

c.‘ tm { c;‘l i-1
n C;"i_1 U{ui"']} ctherwise.

Ty, i=Hn, -
Here C;‘ ; means the ast of those indicea shicl
we reject during the generation of H, up to the

i-th step. How we ottach subhypotheses to enc
H, shich provide new correct resuits. Hor

exact ly:
Hys=Hy ¢ if t=CieN ot ICHD ( RIXD)=X0), shere
Hy ot*Hy ond for i>0:

:1, i :'H;, i_1-(°:0), shere

o := ain{ jeC, ; 132¢{0,1} such that
RCH, 11 (J,2),RI%,1)=2 one
NCHR -1, B0 DS NCHY 4. (5,0),R0%,D) |
shere (Il.hi:"I1+\(C;hi\.r{xtﬂ+ 13 k¢n
3j<|cngth(H;'i_|]
such that xeC(Fr(Hy | 1,§),k))).
ond let
{1 ARG 55) 5 (COMPIRP CR DT A8 )
; 0 ctherwise
and let E(H;‘i_l,n)w(ﬂ* \ Cp, iV
UxeN*l x<a and A(KY | _y.(x,0),A0%,1)2
and ACHY §_1.(x,1),80%,1)%8 }.
In the end let f(Hn,n):-H' \ Gy e

4. AN EXRPLE

Let the dota presentation 3 be such that 0 1)=1, 2 2}e0,
{3)=4 and 2 4)=3 In this order the results of the tesi of R are
F.TF.Tie we obten RC1)sF, R(0)=T, R{4)=F ond R(3)=T
We have to recogrize this retetion R. Let us assume thal we have
knawledge abaut & property of R in the form of the following fixed
point equation:

R{x) ++ x=0¥Y[yx](R{x-y) & R(x+y))

This is an oripinsl positive existential fixed point aquation
with & bourcied quantifier and is a good exemple to show that the
originel fixad point equations often are not informative enough. For
example, it s difficult to decide whether R{S) may be T when
R{6)=F for the shove [fixed point equatron, while truthvalue of
R{3) nfivences R{2) and R(4) influence R{3) el.c. However the
above fixed point aquatton csn be regarded as @ universal siatament
with e bounded quentifier. Therefore i can be automaticaMy
transformed to the following quesi equation system &= reduced by
usual ordering ¢

R(z)« 2=0
~R(z)#~ 3x{0¢2x2](~R(z-x) & R(2-2x))
Thes follows the natural way of thinking because this refers to the
srgument of R less then z So all the solutions of S can be generstsd
83 infinite paths of the following tree:

Dt 2 3 4 5 6 1 8 % 10...

A fper1—F

. ~p—pe
~
1=/ N f P f — P
15.po P
7 7 P TP o

N —
Febl gt T—F—F—F ..,
R I i

F—F ...
Therefore, one is able to decide whether a hypothesis is consistant
with all the ohservations or not. It can be shown that TS(2) consists
of &l such relations which - se paths - are in one of the formaof
the followings: T, TRF, (T.F2M)% s (TF2PKF* where
k.nQ. We remork that the original fixed point iheory cen
deiermine the Jeast fixed paint only.

Lat us see how our stretegy can recognize relstion R when
R{z}= 3 x{3x=2) for alt 2 (this relation belongs ta TS(Z)). Now we
oo hot teal with the encading of solutions of suxiliery retations of
the natural generative quasi equations, becsuse it would take the
situation compliceted and it s not necessery in this cese For

simplicity’s sske we assume thai the enumersting function?®
enumarates formulas beginning with the following ones:

P0):= (2=0), P(1):= Ix[0<2x<2J( ~R(2-x) & R(2-2x)),
P(2):= (20), (3= (221), P4)x=(21),..
Formuiee P (0) mmd P(1) are in our knowledpe %o
Hy=(0,1).01,0).

Let us denots the formulas T 0) and*F(1) by ¢ and ¥,
raspactively.
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The first information obtatred ts R 1)sF. In this cese Hy will
be{0,12(1,0).(2,0)ie

Rz}« 9

-R(z)e-(20)8-¢ vV¥
Note TS(2(H, ))a{g), where g(z)er 2=0.

The next information obtained is R{O}=T. It matchas the
hypothesis H; , therefore Ho:=Hy. The situation i3 the seme in the
case of information R( 4)=F , 80 Hy:=Hs.

Observation R(3)aT makes 8 change because Hy doss not metch

R(3)aT, therafors we have to reject subhypothesie (2,0). Now
H;:-(O.i 1.01,0). Therefore R( 1 )=F, R{4)=F and R{3)=T are to be

produced. Hy 1:=(0,1).(1,0).(3,0) provides R( 1)sF end R( 4)sF,
but 1t does not provide R( 3)aT, aithough it parmits 1t 1e.Z(HZ ¢)
dose ot define R(3) wall. KY 5:2(0,1).(1,0).(3,00.04,1) will be
correct for R(3) «T too Therefore Hy:e Hy 5 ie.

R{z} =PV (1) & Y& ~{1=1)
SR(2)e PV (2=1) & -9

It would be retter 1f the strategy simplified the right hand side of
the gquesi equetions ag It would write (1) instead of
(0 1)8(2=1)

S0 B(Hg) 13 the following

R(2)e{z=0W(D 1 )& x{O<2xcZ){ R(Z-x¥~R(2Z-2x))
~R(2)+ x| 0<2xz}{ ~R{2-Xx)BR(z-2x} ¥{2=1)
It is eesy to see that the only solution of X H,) i just the relation

1o be recognized

CONCLUSIIONI

We have given An inductive inference method which builds up
the implicit definition of the regularity or of the general rule in
question in the form of natural generative fixed point equation
system with bounded quantifiers. It defines the regularity to be
recognized as the solution of the hypothetical quasi equation system
which can match in time the increasing set of experimental data The
sequence of hypotheses generated by the developed inductive
inference method will converge on a large class to the rule that 1s
to be recognized. The so far described procedure can discover each
primitive recursive relation provided the basic functions are
Ackermann functions (cf.(Gergely and Szabo 1986)). Therefore the
proposed inductive inference procedure is sufficient fx practical
purposes.Ours is an asymptotic enumeration strategy end therefore
it eppears to be better than the original enumeration strategies for
being more stable. It is able to recognize even certain
non-recursive relations in asymptotic sense (cf.(Szabo 1966)).
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