skip to main content
article

Improving the performance of reduction to Hessenberg form

Published: 01 June 2006 Publication History

Abstract

In this article, a modification of the blocked algorithm for reduction to Hessenberg form is presented that improves performance by shifting more computation from less efficient matrix-vector operations to highly efficient matrix-matrix operations. Significant performance improvements are reported relative to the performance achieved by the current LAPACK implementation.

References

[1]
Anderson, E., Bai, Z., Demmel, J., Dongarra, J. E., DuCroz, J., Greenbaum, A., Hammarling, S., McKenney, A. E., Ostrouchov, S., and Sorensen, D. 1999. LAPACK Users' Guide 3rd Ed. SIAM, Philadelphia, PA.
[2]
Bartels, R. and Stewart, G. 1972. Solution of the matrix equation AX + XB = C: Algorithm 432. Commun. ACM 15, 820--826.
[3]
Bientinesi, P., Gunnels, J. A., Myers, M. E., Quintana-Ortí, E. S., and van de Geijn, R. A. 2005. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft. 31, 1, 1-- 26.
[4]
Bientinesi, P., Quintana-Ortí, E. S., and van de Geijn, R. A. 2005. Representing linear algebra algorithms in code: The FLAME APIs. ACM Trans. Math. Soft. 31, 1, 27--59.
[5]
Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. 1990. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Soft. 16, 1 (March), 1--17.
[6]
Dongarra, J. J., Du Croz, J., Hammarling, S., and Hanson, R. J. 1988. An extended set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1 (March), 1--17.
[7]
Dongarra, J. J., Hammarling, S. J., and Sorensen, D. C. 1989. Block reduction of matrices to condensed forms for eigenvalue computations. J. Comput. Appl. Math. 27.
[8]
Golub, G. H., Nash, S., and Van Loan, C. F. 1979. A Hessenberg--Schur method for the problem AX + XB = C. AC-24, 909--913.
[9]
Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations, 3rd Ed. The Johns Hopkins University Press, Baltimore, MD.
[10]
Goto, K. 2004. http://www.cs.utexas.edu/users/kgoto.
[11]
Householder, A. S. 1958. Unitary triangularization of a nonsymmetric matrix. J. ACM 5, 339--42.
[12]
Joffrain, T., Low, T. M., Quintana-Ortí, E. S., van de Geijn, R., and Van Zee, F. G. 2006. On accumulating householder transformations. ACM Trans. Math. Soft. 32, 2, 169--179.
[13]
Martin, R. S. and Wilkinson, J. H. 1968. Similarity reduction of a general matrix to Hessenberg form. Numer. Math. 12, 349--68.
[14]
Puglisi, C. 1992. Modification of the householder method based on the compact wy representation. SIAM J. Sci. Stat. Comput. 13, 723--726.
[15]
Schreiber, R. and Van Loan, C. 1989. A storage-efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput. 10, 1 (Jan.), 53--57.
[16]
Sima, V. 1996. Algorithms for Linear-Quadratic Optimization. Pure and Applied Mathematics, vol. 200. Marcel Dekker, Inc., New York, NY.
[17]
Walker, H. F. 1988. Implementation of the GMRES method using Householder transformations. SIAM J. Sci. Stat. Comput. 9, 1, 152--163.
[18]
Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 32, Issue 2
June 2006
205 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/1141885
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 June 2006
Published in TOMS Volume 32, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Linear algebra
  2. eigenvalue problems
  3. reduction to condensed form

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)1
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media