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Abstract 
While the Belief, Desire, Intention (BDI) frame-
work is one of the most influential and appealing 
approaches to rational agent architectures, a gulf 
often exists between the high-level BDI model and 
its practical realisation. In contrast, the Concur­
rent METATEM language, being based upon exe­
cutable formal specifications, presents a close link 
between the theory and implementation, yet lacks 
some of the features considered central to the rep­
resentation of rational agents. In this paper, we 
introduce a hybrid approach combining the direct 
execution of Concurrent METATEM with elements 
of rationality from the BDI framework. We show 
how this system can capture a range of agent be­
haviours, while retaining many of the advantages 
of executable specifications. 

1 Introduction 
The inability of traditional software to handle complex mod­
ern applications, together with the rapid expansion of infras­
tructure such as the INTERNET, has led to the introduction 
of a new technology, termed agent-based systems. An agent 
is a semi-autonomous process, typically communicating via 
message-passing and cooperating with other agents in order 
to achieve common goals. This technology has been particu­
larly successful in producing distributed information systems 
where centralised control is either impractical or undesirable. 
Here, not only is the ability of agents to act autonomously vi­
tal, but such agents are often required to dynamically adapt 
to unforeseen circumstances and to work cooperatively with 
other agents in order to overcome problems. These facets 
make agent-based systems ideal for complex tasks in real-
world applications and, consequently, this technology has 
been applied in a wide variety of areas, from industrial pro­
cess control to cooperative information retrieval. 

In spite of the rapid spread of agent technology, there 
are, as yet, relatively few high-level programming languages 
for agent-based systems. Although considerable research 

has been carried out concerning the development of theo­
ries of agency and cooperation, the lack of appropriate high-
level logic-based programming languages often means that 
implemented systems have very little connection with these 
high-level theories (an exception to this is Shoham's Agent-
Oriented Programming work [Shoham, 1993]). Traditional 
programming languages typically lack the flexibility to han­
dle high-level concepts such as an agent's dynamic control 
of its own behaviour. Consequently, it is widely regarded as 
important that high-level languages be provided, which can 
support the principled development of multi-agent systems, 
from logical theory to implemented system. 

In this paper, we consider two approaches to the high-
level representation of agent-based systems, namely Rao and 
Georgeff's BDI model [Rao and Georgeff, 1991] and Fisher's 
Concurrent METATEM language [Fisher, 1993]. In spite of 
their differing backgrounds we show that they have a great 
deal in common and introduce, in §4, a hybrid approach. 
Whilst not as general as the BDI model, nor as simple as the 
Concurrent METATEM language, this hybrid approach can 
capture a range of agent behaviours, while retaining many of 
the advantages of executable specifications. 

2 The BDI Framework 
Rao and Georgeff [1991 ] considered a particular agent frame-
work whereby individual rational agents incorporate certain 
"mental attitudes" of Belief, Desire and Intention (BDI). 
These are used to represent, respectively, the information, 
motivational and deliberative states of the agent, and together 
effectively determine the system's behaviour. This frame-
work is both appealing and influential, being used in a number 
of practical systems [Jennings and Wooldridge, 1995]. 

2.1 Agents 
The core components of the BDI framework are rational 
agents [Wooldridge and Jennings, 1995]. These are au­
tonomous entities, which execute independently, and have 
complete control over their own internal behaviour. The core 
elements of BDI agents are as follows. Beliefs correspond 
to the information that the agent has assimilated about the 
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world; the set of beliefs is typically incomplete and may be 
incorrect with respect to the true situation. Desires are the 
agent's high-level goals, which need not be achievable simul-
taneously, but are usually consistent. Intentions essentially 
represent a subset of the agent's desires that it has committed 
to achieve. 

2.2 Executing Agent Descriptions 
The key process in executing BDI systems is deliberation. 
This consists of two aspects: 

• deciding which desires will become intentions; 
• deciding how to achieve those intentions. 

Thus, an abstract execution cycle usually involves following 
steps [Rao and Georgeff, 1991]. 

1. Update beliefs based upon observations and actions. 
2. Based on these beliefs, generate new desires. 
3. Select a subset of desires to act as intentions. 
4. Select a step to perform based upon intentions and the 

current state of the agent. 
Thus, intentions are only completed one step at a time. The 
step selected corresponds either to performing an action, 
modifying a belief, or generating a subgoal and, once this 
step has been completed, the execution cycle begins again. 

2.3 Real BDI Systems 
Since its inception, many real-world agent-based systems 
have been based upon the BDI philosophy, most notably the 
Procedural Reasoning System (PRS) [Georgeff and Ingrand, 
1989], but also systems such as INTERRAP [Fischer et a/., 
19961. In the PRS, the selection of a step to be performed 
involves searching a plan library for plans which can achieve 
the selected intention. This library consists of pre-constructed 
plans; planning from first principles is not undertaken. In 
the PRS, intention structures, which are essentially partial 
orders of dependencies, provide linkage between all related 
intentions. For example, such structures record the fact that 
some intentions may be suspended, some may be deferred 
and some depend on further intentions. 

Although both PRS and its successor, dMARS, have been 
successfully used in a number of areas, such as Air Traffic 
Control [Rao and Georgeff, 1995], the link between such sys­
tems and the BDI framework is often tenuous. In particular, 
while the practical systems incorporate elements termed be­
liefs and intentions, these are distinct from the formally de­
fined beliefs and intentions of BDI model. 

Consequently, there is a requirement for mechanisms link­
ing the high-level BDI model with its low-level realisation. 
Several different approaches have been considered. For ex­
ample, a number of BDI-based programming languages have 
been proposed [Weerasooriya et al, 1995; Rao, 1996a]. 
However, these have either been too low-level or not expres­
sive enough to capture the key elements of BDI systems. 

More recently, object-oriented development methodologies 
have been adapted in order to provide, through a form of 
agent-oriented development methodology, a closer link be­
tween the model and its realisation [Kinny and Georgeff, 
1997]. Since this practical development approach still does 
not consider the maintenance of formal properties, the need 
for high-level logic-based languages capturing the key com­
ponents of the BDI model remains. 

3 The Concurrent METATEM Framework 
Fisher [1993] introduced Concurrent METATEM, an agent-
based programming language comprising two elements: 

1. The representation of each individual agent's behaviour 
using a temporal specification. 

2. An operational framework providing both asynchronous 
concurrency and broadcast message-passing. 

Temporal logic provides a means of declaratively specifying 
agent behaviour. It not only represents the dynamic aspects 
of an execution, but also contains a mechanism for represent­
ing and manipulating the goals of the agent. The operational 
model of Concurrent METATEM is both general purpose and 
intuitively appealing. The use of broadcast message-passing 
provides both a general and flexible communication model 
for concurrent objects [Birman, 1991] and a natural interpre­
tation of distributed deduction [Fisher, 1997b]. These fea­
tures together provide a coherent and consistent programming 
model within which a variety of agent applications can be rep­
resented [Fisher, 1994]. 

3.1 Agents 
As in the BDI framework, the basic elements of Concurrent 
METATEM are agents, although these need not necessarily be 
rational. There are two elements to each agent: its interface 
definition and its internal definition. 

The definition of which messages an agent recognises, to­
gether with a definition of the messages that an agent may 
itself produce, is provided by the interface definition, which 
may be given as follows. 

car () 
i n : go,s top, turn 

out: empty,overheat 
Here, {go, stop, t u rn } is the set of messages the 'car ' 
agent recognises, while the agent itself is able to produce the 
messages {empty, overheat} . 
The internal definition of each agent is given by a temporal 
logic specification [Manna and Pnueli, 1992]. Temporal logic 
is seen as classical logic extended with various modalities for 
representing temporal aspects of logical formulae [Emerson, 
1990]. The temporal logic used here is based on a linear, 
discrete model of time. Thus, time is modelled as an infi­
nite sequence of discrete 'moments', with an identified start­
ing point, called 'the beginning of time'. Classical formulae 
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are used to represent constraints within individual moments, 
while temporal formulae represent constraints between mo-
ments. Examples of temporal operators are given below. 

is true now if is true at some moment in the future. 

is true now if is true always in the future. 

is true now if is true from now until a future 
moment when is true. 

is true now if is true at the next moment in time. 

start is only true at the beginning of time. 

As an agent's behaviour is represented by a temporal for­
mula, this can be transformed into the temporal normal form, 
SNF [Fisher, 1997a], This process not only removes the ma­
jority of the temporal operators, but also translates the for­
mula into a set of rules suitable for cither execution or verifi­
cation. Each of these rules is of one of the following varieties. 

where each is a literal. Note that SNF is just as ex­
pressive as the full temporal logic. This logical form provides 
the core elements for describing basic dynamic execution: 

• a description of the current moment; 

• a description of transitions that might occur between the 
current and the next moment; 

• a description of situations that wil l occur at some, un­
specified, moment in the future. 

Thus, using this approach, the behaviour of an agent can be 
represented now, in transition to the next moment in time and 
at some time in the future [Fisher, 1995]. 

3.2 Execut ing Agent Descriptions 

An agent's temporal specification can be implemented in a 
number of ways, for example through refinement to tradi­
tional programming languages. However, since temporal 
logic represents a powerful, high-level notation, a viable al­
ternative, at least for prototyping purposes if not for full im­
plementation, is to animate the agent by directly executing its 
temporal specification [Fisher, 1996]. 

In the case of Concurrent M E T A T E M , the set of SNF rules 
is executed using the imperative future paradigm [Barringer 
et al, 1996], Here, a forward-chaining process is employed, 
using information about both the history of the agent and its 
current set of rules in order to constrain its future execution. 

As an example of a simple set of rules which might be part 
of the c a r agent's description, consider the following. 

Here, m o v i n g is false at the beginning of time and when­
ever go is true (for example, if a go message has just been 
received), a commitment to eventually make m o v i n g true is 
given. Similarly, whenever both go and m o v i n g are true, 
then either o v e r h e a t or empty will be made true in the 
next moment in time. 

The operator used to represent basic temporal indetermi­
nacy is the sometime operator, When a formula such as 

is executed, the system must attempt to ensure that 
eventually becomes true. As such eventualities might not be 
able to be satisfied immediately, a record of the outstanding 
eventualities must be kept, so that they can be re-tried as ex­
ecution proceeds. The standard heuristic used is to attempt 
to satisfy as many eventualities as possible, starting with the 
oldest outstanding eventuality [Fisher and Owens, 1992]. 

An important consideration with respect to the practical 
implementation of Concurrent M E T A T E M is that, although 
it can be made into a complete theorem-prover for tempo­
ral logic (at least in the propositional case), this is rarely 
done. Thus, the complexity of full theorem-proving is usu­
ally avoided [Fisher, 1996]. 

3.3 Concurrency, Communica t ion and Group ing 
We note that such asynchronously executing agents, commu­
nicating via broadcast message-passing, are very useful for 
developing open systems [Hewitt, 1991], while the notion of 
agent groups [Maruichi et al., 1991] is essential both for re­
stricting the extent of broadcast messages and for structuring 
the agent space. 

3.4 Appl icat ions 
The combination of executable temporal logic, asynchronous 
message-passing and broadcast communication provides a 
powerful and flexible basis for the development of agent-
based systems. Consequently, Concurrent M E T A T E M has 
been applied in a number of areas, including distributed artifi­
cial intelligence, concurrent theorem-proving, artificial agent 
societies and transport systems [Fisher, 1994]. 

4 A Hybrid Approach 
In this section, we show how an extended version of Concur­
rent M E T A T E M can be used to implement the core facets of 
the BDI model. As we are keen to represent only the fun­
damental elements, there are a variety of details that we ig­
nore. For example, we wil l not consider real-time constraints, 
complex plan structures/libraries, or complex intention struc­
tures from the PRS, nor wil l we consider first-order temporal 
specifications, concurrent actions, multiple threads, cloning 
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4.3 Deliberative/Execution Aspects 

Before considering the detailed execution within our ap­
proach and its relationship to BDI architectures, it is useful to 
examine the basic interpretation cycles for both the PRS [Rao 
and Georgeff, 1995] and core M E T A T E M execution [Fisher 
and Owens, 1992]. These are presented in Fig. 1. Note the 
close similarities, the main difference being the more com­
plex (and stratified) deliberation phase in the PRS. 

Thus, the key modification of the execution mechanism 
concerns the implementation of deliberation. The subset of 
eventualities selected, the order in which they are attempted, 
and the mechanism for achieving them, are all the concern 
of deliberation. If, for the moment, we assume that desires 
and intentions are trivially achievable (this restriction is con­
sidered further below), then we can describe the key deci­
sion mechanisms of the two approaches as follows. As de­
liberation is concerned with weighing up each of the possible 
choices and choosing a subset to actually undertake, then in 
Concurrent M E T A T E M , the eventualities (desires/intentions) 
are simply ordered by age and the oldest one is attempted 
first, while in BDI systems, each is examined in turn and a 
specific cost function is used to generate an ordering. 

In order to provide added flexibility within the language, 
we allow the user to redefine the priority functions used 
within deliberation. Thus, the system requires a desire pri­
ority function, pd, which takes as arguments a list of eventu­
alities (desires), and the history of the execution, and returns 
an ordered list of eventualities (intentions). This is then used 
to control the part of deliberation that extracts intentions from 
desires. In standard Concurrent METATEM, this would sim­
ply involve comparing the age of each eventuality; in the PRS 
this function would typically be much more complex, incor­
porating a variety of aspects of the current and past state of 
the agent. 

If we were to remove the above simplification whereby in­
tentions are trivially achieved, we could also allow a user de­
fined intention priority function, pi, which takes as arguments 
a list of eventualities (intentions), the history of the execu­
tion, and a list of plan definitions, and returns an ordered list 
of eventualities (intentions) to be executed immediately. In 
the PRS, the list returned would typically only contain one 
element (as only one step is taken at each cycle), though this 
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Figure 1: A Comparison of Interpreter Cycles. 

or grouping from Concurrent METATEM. In spite of these re-
strictions, we will show that the key elements of simple BDI 
architectures can be concisely and consistently represented 
and implemented using extended Concurrent M E T A T E M . 

4.1 In format iona l Aspects 
As, in practical BDI architectures such as the PRS, beliefs 
are usually coded by ground instances of first-order predicate 
calculus, then these can be represented directly as (internal 
agent) facts in Concurrent M E T A T E M . However, as Concur­
rent METATEM does not incorporate persistence, then this 
necessitates the addition of meta-level frame axioms, such as 

Thus, an alternative approach is to directly add a new modal 
operator for belief to the logic executed within Concurrent 
M E T A T E M . AS in BDI , this is a modal dimension satisfying 
the KD45 axioms and the execution mechanism itself is mod­
ified to handle the persistence of beliefs, i.e. both the above 
frame axiom and the KD45 axioms are 'built in' to the exe­
cution mechanism. 

Thus, this is the key logical extension provided to Con­
current METATEM. The logic executed is now a multi­
modal logic consisting of both temporal and doxastic dimen­
sions. Note that SNF has been extended to such logics else­
where [Fisher et al, 1996], and rules now incorporate the new 
belief modality, 'B'. 

4.2 Motivational Aspects 
The key observation we use regarding the BDI framework is 
that, in practice, there is often little fundamental difference 
between desires and intentions. The former represent all the 
goals that the agent wishes to achieve; the latter represent 
those that it is actively pursuing at present. Indeed, in the 
logical foundations of the BDI model [Rao, 1996b], both de­
sires and intentions are represented by the same type of modal 
logic (KD), while beliefs are represented by a different one 
(KD45). Thus, a very natural (although Bratman [1987] takes 
a different view) mechanism for representing both intentions 
and desires is to use temporal eventualities. In particular, 
these are required to be satisfied eventually (if consistent), 
can be conflicting and the system must 
choose between them in order to generate further execution. 



framework can obviously accommodate more complex sys­
tems. 

Thus, the simple deliberation mechanism in Concurrent 
M E T A T E M (see Fig. I) is replaced by a two stage process 
whereby the function pd is used to generate a list of inten­
tions and the function pi is used to choose appropriate ac­
tions, based upon this intention list. The implementation of 
these priority functions may be carried out in a number of 
ways, for example via meta-level METATEM rules [Barringer 
et al 1991] directly provided by the user. 

In this way a language for implementing simple BDI-like 
systems can be provided by extending Concurrent M E T A T E M 
with belief elements and user definable priority functions for 
use in deliberation. Note that the more complex elements of 
practical BDI systems may also be represented in this lan­
guage. For example, in [Mulder et a/., 1996], an implementa­
tion of a simplified version of the PRS is provided, incorpo­
rating a range of low-level details, such as the manipulation 
and interpretation of plan components. Simply, dependen­
cies between plans can be provided by asserting that if any 
sub-plan has not been constructed, the plan itself can not be 
completed, e.g. 

However, motivation for the work described in this paper 
is provided by the observation that such a representation of 
the PRS can be improved, simply by extending Concurrent 
M E T A T E M with elements from the BDI model. 

4.4 Analysis 

There are five notable points to make regarding this hybrid 
approach of extending executable temporal logic with aspects 
of the BDI model. 

Firstly, since the key elements added are the KD45 belief 
modality and the user defined priority functions, the Concur­
rent METATEM execution mechanism remains relatively un­
changed. The efficiency of such an approach depends primar­
ily on the complexity of the priority functions provided. For 
example, if a simple age-ordering function is used, then the 
speed is comparable with that of Concurrent M E T A T E M . 

A variety of deliberation mechanisms can be represented 
by the use of user definable priority functions within the ex­
ecution mechanism. The constraints upon this are the com­
plexity of evaluating such functions and the expressive power 
of the logical notation. Regarding the latter, the logical rule 
form is as expressive as full temporal logic and so a wide va­
riety of functions can potentially be provided. 

For this hybrid approach a formal semantics can be devel­
oped, though it would be parameterised by the semantics of 
the priority functions. If only sequences of actions under­
taken are considered, then executions represent appropriate 
models for the BDI logics [Rao, 1996b]. 

This approach provides increased expressive power. Not 
only can a variety of priority functions be defined, but ad­
ditional elements of Concurrent M E T A T E M , such as multi­
threading and disjunctive rules, can potentially be incorpo­
rated. 

Finally, while there are no explicit axioms linking, say, be­
liefs and intentions (as are often found in theoretical works 
concerning BDI), rules in the program can be used to par­
tially provide these, for example links beliefs 
and desires (eventualities). 

5 Conclusions and Future Work 
In this paper, we have described an extension to Fisher's Con­
current M E T A T E M language that presents the possibility of 
implementing BDI-like systems using a form of executable 
multi-modal logic. While we do not claim that all BDI sys­
tems can be implemented using this approach, we believe a 
significant range of applications can be, providing the prior­
ity functions defined are not excessively complex. 

The key observations from this work are that, in BDI sys­
tems, beliefs are primitive and distinct, while desires and 
intentions can essentially be represented as the same kind 
of entities. This, together with the observation that de­
sires/intentions correspond, in many respects, to eventualities 
in temporal logic, allows the definition of basic BDI entities 
within Concurrent M E T A T E M . Thus, this work separates the 
basic elements of the model (beliefs and desires) from the 
mechanisms for manipulating these and deciding how to act 
(deliberation). 

While this approach will not be as efficient as directly im­
plemented BDI systems, such as the PRS, it provides the op­
portunity at least for prototyping of BDI systems. The execu­
tion of temporal logic through Concurrent M E T A T E M is well 
understood and, although the extended language requires the 
execution of a multi-modal logic, it remains a relatively in­
expensive extension. As execution at an attempt to construct 
a model, rather than a complete theorem-proving process, it 
represents a relatively cheap mechanism for animating a spec­
ification. At the other extreme, it is difficult to see how the 
multi-modal BDI logic from [Rao, 1996b] could be directly 
executed. 

Our future work concerns three areas: extended lan­
guages; refined priority functions; and expanded formal se­
mantics. As mentioned above, there are elements of Con­
current M E T A T E M that are not required in the BDI model. 
It is thus interesting to consider how these elements could 
be used in the framework described here. Also, once such 
a system is produced, it is relatively easy to extend it with 
the other elements of Concurrent M E T A T E M , such as cloning 
and grouping. The definition of a range of detailed deliber­
ation strategies, via appropriate priority functions, is another 
obvious direction. Finally, the temporal semantics of Con­
current M E T A T E M must be adapted to fully incorporate the 
above extensions. 
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