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Abstract

We present results from an empirical evalua-
tion of the impact of Bayesian network struc-
ture learning strategies on the learned structures.
In particular, we investigate how learning algo-
rithms with different optimality guarantees com-
pare in terms of structural aspects and gener-
alisability of the produced network structures.
For example, in terms of generalization to un-
seen testing data, we show that local search al-
gorithms often benefit from a tight constraint
on the number of parents of variables in the
networks, while exact approaches tend to ben-
efit from looser parent restrictions. Overall, we
find that learning strategies with weak optimality
guarantees show good performance on synthetic
datasets, but, compared to exact approaches, per-
form poorly on the more “real-world” datasets.
The exact approaches, which guarantee to find
globally optimal solutions, consistently general-
ize well to unseen testing data, motivating further
work on increasing the robustness and scalability
of such algorithmic approaches to Bayesian net-
work structure learning.

1 INTRODUCTION

This work focuses on the well-known problem of learning
the structure of a Bayesian network (BN) from data (Heck-
erman et al., 1995). The BN structure learning problem
(BNSL) is to find a BN structure which optimizes a de-
composable scoring function—typically, either a Bayesian
posterior probability such as the Bayesian Dirichlet (BD)
score or a penalized likelihood function. BNSL is NP-
hard (Chickering, 1996), which poses challenges for devel-
oping algorithmic solutions for this important problem.

Methods proposed for solving BNSL on real-world datasets
divide into approximate, local search methods, e.g., (Heck-
erman et al., 1995; Chickering, 2002; Teyssier and Koller,

2005; Tsamardinos et al., 2006), which do not offer qual-
ity guarantees (in terms of how well a given decom-
posable scoring function is optimized), and exact algo-
rithms (Ott and Miyano, 2003; Koivisto and Sood, 2004;
Silander and Myllymäki, 2006; Parviainen and Koivisto,
2009; de Campos and Ji, 2011; Yuan and Malone, 2013;
Bartlett and Cussens, 2013) which produce guaranteed op-
timal solutions with respect to the scoring function. Of-
ten, the local search methods are computationally effi-
cient, while the exact algorithms can require an exponential
amount of time (and in cases, even memory).

The score of a BN structure is ideally a reflection of how
well it models a training dataset. The general assumption
has been that networks which model the training data well
should also accurately reflect new data. However, it is well-
known that a model can describe a training set very well,
yet generalize poorly to new data (Mitchell, 1997). Thus,
there is no guarantee that a network which optimizes a
score for a training set will generalize well to new data.

There is currently no clear empirical evidence (for or
against) on whether the increased computational efforts re-
quired by exact approaches to BNSL are justifiable in terms
of performance of learned BNs on unseen testing data. All
in all, the relationship between the chosen learning algo-
rithm and the quality of the learned BN structures in terms
of generalisability is not well understood. Furthermore, the
choice of the learning algorithm used can affect structural
properties of the learned networks in other ways. For ex-
ample, for many of the exact algorithmic solutions to be
applicable, in practice structural restrictions must be placed
on the classes of BN structures considered during search.
A commonly-applied restriction is a hard constraint on the
number of parents allowed for each vertex in the network
structures (Friedman et al., 1999). Since most scores in-
corporate a complexity penalty as a “soft constraint” fa-
voring sparser networks, this is a practically-motivated re-
striction, as computing the scoring function for an arbitrary
number of parents is in general infeasible (though pruning
rules (de Campos and Ji, 2011) may in cases permit com-
puting all necessary scores for datasets with few records).



However, the influence of such choices combined with the
choice of the learning algorithm used—we refer to the com-
bination of the two as a learning strategy—has not received
much attention.

The aim of this work is to establish a more in-depth
understanding of the aforementioned, currently not well-
understood aspects of BNSL via an extensive empirical
evaluation. Our aim is to shed light on the relationship of
different learning strategies, based on four popular score-
based structure learning algorithms, and the unknown dis-
crepancy between training set scores and generalization. In
particular, we address the following research questions for
different fixed learning algorithms and training sets.

Q1 How similar are structures found using different learn-
ing strategies?

Q2 How do hard constraints on the number of parents in
learned structures affect their generalization?

Q3 How does the amount of training data affect the gener-
alization of learned structures?

Q4 Which learning strategies result in networks with the
best generalization?

Our main contributions, based on a rigorous experimental
setup, are the following. For Q1, we show that the different
learning strategies tend to learn dissimilar network struc-
tures. With respect to Q2, we show that for small datasets,
hard constraints limiting the maximum number of par-
ents to 2 improves generalization on a few datasets for lo-
cal search algorithms; however, optimal algorithms usually
benefit from a higher limit. We answer Q3 by using increas-
ingly large subsets of available training data. Regardless
of the algorithms’ guarantees, more training data results in
more accurate predictions on testing data. Finally, we ad-
dress Q4 by considering all of the data collected during the
evaluation. For some datasets, simple strategies such as the
tractable Chow-Liu algorithm can provide good generaliza-
tion. However, the simple strategies fail to generalize well
on other datasets. Predictive likelihood results show that
the optimal algorithms consistently generalize well.

While some of the observations made in this work, based
on concrete empirical data, may appear to the reader as
common knowledge, we note that to our best knowledge
this is the first work which studies all of the question listed
above thoroughly via empirical means. A previous related
study is (Acid et al., 2004), which focuses on a case study
of the choice of BNSL learning strategies for data from
an emergency medical service. That study focused on Q1
for that particular domain and, orthogonally to the present
work, the impact of the choice of scoring functions on the
learning results. Furthermore, focusing on causal Bayesian
networks, an evaluation of structural distance measures was
presented in (de Jongh and Druzdzel, 2009). (Ueno, 2010;

Ueno, 2011) studied the effect of the equivalent sample size
of BD on learned structures but did not consider predictive
likelihood.

2 BACKGROUND

A Bayesian network (BN) (Pearl, 1988) is a compact rep-
resentation of a joint probability distribution over random
variables X = {X1, . . . , Xn}. It consists of a directed
acyclic graph (DAG) G, in which each vertex in the graph
corresponds to one of the random variables, and conditional
probability distributions P (Xi|PAi), where PAi is the set
of parents of Xi in G. The (log) joint probability distribu-
tion over all of the variables is

logP (X1, . . . , Xn|G) =

n∑
i

logP (Xi|PAi).

Given a BNN and a dataset d = {d1, . . . , dN}, where each
dr (record) is independent of the others, and a complete
instantiation of X, the likelihood of d given N is

logP (d|N ) =

N∑
r

logP (dr|N ) =

N∑
r

n∑
i

logP (Xr
i |PAr

i ),

(1)

where Xr
i and PAr

i are the instantiations of Xi and its par-
ents in record dr, respectively. In total, Equation 1 consists
of N ·n terms, each of which corresponds to the likelihood
of one variable in one record givenN . We will refer to this
as the predictive likelihood of N on d and use the notation
`d when N is clear from context.

Given a training dataset dt and a scoring function s, the
Bayesian network structure learning problem (BNSL) is
to find a BN N ∗ ∈ argmaxN s(dt,N ), i.e., a Bayesian
network structure with the best score in terms of the
scoring function s. The scoring function s is usually
a Bayesian posterior probability or penalized likelihood
function which measures how well N “fits” dt. In prac-
tice, s is decomposable (Heckerman et al., 1995), i.e.,
s(dt,N ) =

∑
i s(dt, Xi,PAi). The s(dt, Xi,PAi) terms

are often called local scores.

3 LEARNING ALGORITHMS

Our primary goal is to compare the impact of the guaran-
tees of structure learning algorithms to the generalization
of learned networks to unseen testing data. For this, we use
four popular score-based learning algorithms with a range
of optimality guarantees. In the following discussion, opti-
mality guarantees refer to behavior with respect to the scor-
ing function and a training dataset. In particular, optimality
does not refer to behavior on unseen testing data.

Hill climbing with a tabu list and random restarts
(tabu). Hill climbing is a widely-used local search tech-
nique in discrete optimization (Russell and Norvig, 2003)



that typically finds local optima for an objective function
f by maintaining a current solution and applying search
operators. At each step, all search operators are tentatively
applied to the current solution to find its neighborhood. The
member of the neighborhood which results in the biggest
improvement to f is selected as the new current solution.
This process is repeated until a local optimum is found, that
is, when the current solution is better than everything in its
neighborhood. Random restarting is a strategy to escape
from a local optimum by randomly changing a locally opti-
mal solution and restarting the search from the new random
solution. The tabu list strategy (Glover, 1990) augments
random restarts by keeping track of recently visited solu-
tions; solutions in the tabu list are ignored when consider-
ing new neighborhoods. Even with random restarts and the
tabu list, the algorithm is unable to provide guarantees on
how close the found local optima are to the globally opti-
mal solutions in terms of their scores.

In the context of Bayesian networks, each solution corre-
sponds to a network; the search operators considered here
are edge addition, deletion and reversal (as long as the re-
sulting structure is a DAG). The objective function f is ex-
actly the scoring function s.

Max-min hill climbing (mmhc). Max-min hill climb-
ing (Tsamardinos et al., 2006) is a two-phase hybrid learn-
ing algorithm. During the first phase, it uses a set of sta-
tistical independence tests to identify arcs that are forbid-
den from appearing in the learned network. The second
phase uses tabu to find local optima within this restricted
space. Here we use a mutual information statistical test dur-
ing the first phase. The first phase of mmhc is similar to
constraint-based methods such as pc (Spirtes et al., 2000).
Empirically, mmhc has been shown to outperform several
other state-of-the-art algorithms, including PC, sparse can-
didate, three phase dependency analysis, optimal reinser-
tion and greedy equivalence search (Tsamardinos et al.,
2006). While mmhc does guarantee to recover BN struc-
tures when the data are faithful to a DAG in the large sam-
ple limit (Tsamardinos et al., 2006), it does not offer any
non-trivial guarantees about the generalization quality of
the learned network for unfaithful, finite datasets.

Chow-Liu (cl). The Chow-Liu algorithm (Chow and Liu,
1968) is an exact, polynomial-time algorithm for finding
an optimal tree-structured BN. The algorithm calculates the
mutual information between all pairs of variables to form a
weighted graph. The maximum spanning tree through the
graph corresponds to the optimal tree-structured BN.

Provably optimal (opt). Several algorithms have been de-
veloped which are guaranteed to find a network which op-
timizes s (Ott and Miyano, 2003; Koivisto and Sood, 2004;
Silander and Myllymäki, 2006; de Campos and Ji, 2011;
Parviainen and Koivisto, 2009; Cussens, 2011; Yuan and
Malone, 2013). In practice, these algorithms take as input

a set of local scores for each variable and find an optimal
network with respect to these scores. In this work, we use
two of these algorithms which have previously (Malone
et al., 2014) been shown to perform well on a variety of
datasets. The first (Yuan and Malone, 2013) is based on
casting BNSL as a shortest-path finding problem; it then
uses A* to solve the shortest path problem, which gives the
optimal network for the given local scores. The second al-
gorithm (Bartlett and Cussens, 2013) creates an integer lin-
ear program (ILP) based on the local scores. The solution
to the ILP corresponds to the optimal network for the local
scores. Both A* and ILP are guaranteed to find (equivalent)
optimal network structures. In this work, our goal is to un-
derstand the impact of the optimality guarantee on gener-
alization. Since we are not interested in the relative perfor-
mance in terms of running time or memory consumption
among the algorithms, we make no distinction between the
different optimal algorithms.

4 QUALITY MEASURES

In order to address our research question Q1, we propose a
normalized version of the structural Hamming distance to
quantify structural similarity. Research questions Q2–Q4
concern generalization; we propose measures based on the
predictive likelihood of Equation 1 to evaluate these results.

4.1 Structural Similarity

We evaluate the structural similarity of two networks with
structural Hamming distance (SHD) (Tsamardinos et al.,
2006). The SHD between two networks is calculated by
transforming the two networks into the partially directed
acyclic graphs (PDAGs) representing their equivalence
classes. The number of edge additions, deletions, reversals,
and orientation changes (converting an undirected edge
into a directed edge and vice versa) to transform one PDAG
into the other is the SHD. The motivation behind SHD lies
in equivalence classes of BNs; using different conditional
probability distributions, different DAG structures can de-
scribe exactly the same set of joint probability distribu-
tions (Chickering, 1995); these DAGs belong to the same
equivalence class. The SHD is 0 between DAGs in the
same equivalence class. Thus, in a sense, SHD serves as
an imperfect proxy for measuring the distance between the
distributions represented by two DAGs. In order to facili-
tate comparison across datasets with differing numbers of
variables, we use a normalized form ŜHD of SHD:

ŜHDd =
SHDd(
nd

2

)
/2

, (2)

where SHDd is the structural Hamming distance between
two networks for dataset d, nd is the number of variables
in dataset d and

(
n
2

)
is the binomial coefficient. The nor-

malization constant
(
nd

2

)
/2 is approximately the maximum



number of edges present in a network structure, and hence
also in the order of the SHD between two networks learned
for dataset d.

4.2 Predictive Likelihood

We use the predictive likelihood to evaluate the generaliza-
tion capability of the learned networks. In particular, for
a dataset d and learning strategy l we calculate the per-
prediction-likelihood, `d,lpp , which is the likelihood of each
prediction on the test set:

`d,lpp = −
∑10

i `d,li

Nd · nd
, (3)

summing over the folds i = 1..10, where `d,li is the pre-
dictive likehood according to Equation 1 on the test set for
fold i using learning strategy l (see Section 5.1 for cross-
validation discussion), Nd is the number of records in the
test set, and nd is the number of variables in the dataset.

The numerator of Equation 3 is the sum over all of the test
set predictive likelihoods for learning strategy l and dataset
d. As discussed in Section 2, each `d,li term comprises Nd

10 ·
nd terms. In total, the sum in the numerator includes Nd ·nd

terms, each of which corresponds to the log probability of
one variable of one record from the test set. Consequently,
the denominator serves as a normalizing constant, and `d,lpp

is the average log probability of each prediction.

In order to compare learning strategies, we normalize the
`d,lpp values for each dataset between 0 and 1 to obtain

ˆ̀d,l
pp = 1−

`d,lpp −minl′{`d,l
′

pp }
maxl′{`d,l

′
pp } −minl′{`d,l

′
pp }

(4)

where l′ ranges over all learning strategies. Note that, after
normalization, the learning strategy with the best `d,lpp has
ˆ̀d,l
pp = 0 while the worst learning strategy has ˆ̀d,l

pp = 1.

It is important to note that `d,lpp and ˆ̀d,l
pp consider all variables

equally. In particular, they do not consider a special “class”
variable.

5 EXPERIMENTAL SETUP

We continue by describing the experiment setup.

5.1 Datasets

We used datasets from a previous wide-scale empirical
study that focused on predicting the efficiency of BNSL
algorithms (Malone et al., 2014)1. In total, we obtained

1The datasets are available at http://bnportfolio.
cs.helsinki.fi/. Please see the original study for data pre-
processing.

Table 1: Basic dataset characteristics
Dataset Type n N
agaricus uci 22 8 123
alarm10 000 sam 37 10 000
alarm1 000 sam 37 1 000
alarm100 sam 37 100
carpo10 000 sam 60 10 000
carpo1 000 sam 58 1 000
carpo100 sam 56 100
connect6 000 sam 39 6 000
anneal uci 32 897
credit uci 18 1 000
lymph uci 19 147
tumor uci 18 338
dermatology uci 34 365
flag uci 27 193
hailfinder1 000 sam 56 1 000
hailfinder100 sam 56 100
votes uci 17 434
hypothyroid uci 22 3 771
insurance10 000 sam 27 10 000
kredit uci 18 1 000
kr-vs-kp uci 37 3 195
letter uci 17 20 000
lung uci 57 31
mildew1 000 sam 35 1 000
mildew100 sam 35 100
soybean uci 36 306
spect uci 23 186
water100 sam 26 100
zoo uci 17 100

29 datasets from two categories used in that study: 16 are
“real” datasets from the UCI Machine Learning Repository
(uci), and further 13 are generated using logic sampling
from well-known benchmark networks (sam).

As Table 1 shows, the number of variables in the datasets
ranges from 17 to 60, and the number of records ranges
from about 30 to 20 000. We used standard 10-fold cross-
validation in order to evaluate the learning strategies.
Datasets were randomly split into 10 folds. Unless other-
wise noted, all results are averages over all 10 folds. For
a few datasets, not all learning strategies completed on all
folds. In these cases, the averages were adjusted to properly
account for the number of completed folds.

5.2 Learning and Inference

Most of the learning algorithm implementations are pub-
licly available. In all cases, default parameter values were
used (excluding number of parents).

Exact algorithms. The previous study (Malone et al.,
2014) found that the ILP algorithm usually ran faster than
A* for datasets with up to 10 000 local scores. In order to
limit the computational requirements of this study, we used
this simple decision rule to select either ILP or A* for each
dataset. We used a time limit of 2 hours. If the selected al-
gorithm failed, the other one was used.



Parent limit. For all algorithms except cl, we used hard
limits of 2 and 8 on the number of parents. This constraint
serves two purposes. First, a hard limit on the complexity
of the learned network allows evaluation of the learning
algorithms in the different search spaces. In particular, the
space defined by a parent limit of 2 is a subset of the space
defined by a parent limit of 8. Thus, the optimal solution
for the at-most-8-parents space is always at least as good
as that of the at-most-2-parents space. Second, calculating
all local scores for large parent limits is impractical.

Table 2 outlines the seven combinations of learning algo-
rithms and parent limits used in the evaluation.

Scoring function. We selected the commonly-used
Bayesian Dirichlet with score equivalence and uniform
structure prior (BDeu) scoring function (Heckerman et al.,
1995) with an equivalent sample size (ESS) of 1 as the scor-
ing function. Note that, while several previous studies (Si-
lander et al., 2008; Liu et al., 2012; Korucuoglu et al., 2014)
have demonstrated that BDeu is sensitive to the ESS, BDeu
with an ESS of 1 is a commonly-used score (Acid et al.,
2004), which motivates this choice.

Inference. For all learned structures, parameter values
were set using a symmetric Dirichlet prior with a concen-
tration parameter of 1 (which is equivalent to Laplacian
smoothing). All testing likelihood calculations were per-
formed by multiplying relevant family factors.

6 RESULTS

In this section, we address each of the research questions
Q1–Q4. In Section 6.1, we answer Q1 by showing that
ŜHD is typically high among networks learned using differ-
ent algorithms, particularly for uci datasets. In Section 6.2,
we show that, surprisingly, the answer to Q2 depends upon
learning algorithm and dataset. We address Q3 in Sec-
tion 6.3, where we find that increasing training data both
improves prediction accuracy and reduces variance among
cross-validation folds. In Section 6.4 we demonstrate that
somewhat unexpectdly, for sam datasets simple learning
strategies like cl perform well. The opt strategy consistently
generalizes better for uci datasets. These observations sug-
gest fundamental differences in the uci and sam datasets.

6.1 Structural Similarity

We address Q1 by evaluating the similarity of learned struc-
tures using ŜHD in two different settings. We first con-
sider the similarity of structures learned using the same
algorithm on different cross-validation folds. We then in-
vestigate the similarity of structures learned using differ-
ent algorithms on the same cross-validation fold. As a triv-
ial baseline learning “result,” the empty network with no
edges, empty, is also included. We stress that the goal of Q1

is to evaluate the structural similarity of learned networks
to each other; we do not consider e.g. similarity to “gold
standard” networks which do not exist for uci datasets.

Variation within a learning algorithm. Due to the cross-
fold validation strategy, each algorithm results in multiple
networks on each dataset. We compared the ŜHD among all
pairs of networks learned using a single learning strategy.
Figure 1(top) shows that, for sam datasets, the difference
among learned networks was usually small. In contrast,
Figure 1(bottom) shows that uci datasets result in more
varied networks. The variation for cl in Figure 1(bottom,
right) is much lower than those of either opt8 (left) or tabu2

(center). This highlights how the reduced search space de-
creases variability among optimal structures.

Interestingly, for uci datasets, opt8 networks tend to have a
slightly higher ŜHD than those of tabu2. However, the vari-
ance for opt8 is smaller than that of tabu2. One interpreta-
tion is that opt8 networks are, in terms of ŜHD, “equally
spaced.” On the other hand, some pairs of the tabu2 net-
works are quite similar, while others have more pronounced
differences. An explanation for this phenomenon is the
greedy search strategy of tabu2. In the beginning stages
of the search, tabu2 is likely to select the same dominant
edges, regardless of the nuances of the dataset at hand.
In contrast, opt8 selects accurate substructures and opti-
mally combines them, so it may disregard single strong
edges in favor of more informative structures. Another ex-
planation is that the search space for tabu2 is more con-
strained than that of opt8. As further evidence for the more
constrained space leading to more similar networks, both
cl (Figure 1(bottom, right)) and opt2 on uci datasets (not
shown) typically result in smaller ŜHD than tabu2.

Variation between learning algorithm. We additionally
compared the average ŜHD among networks learned us-
ing different strategies on the same training set. Figure 2
shows that some of the strategies learn quite similar net-
works, while for other strategies the networks differ quite
a bit. Perhaps unsurprisingly, the same learning algorithm
with different parent limits often result in similar networks.
The mmhc networks are quite similar to empty, which sug-
gests that they are very sparse. Many of the datasets have
fewer than 1 000 records. So the statistical tests employed
at the beginning of mmhc are often unable to detect depen-
dencies, and thus many possible edges are discarded before
beginning the score-based search.

In general, all of the learning strategies tend to learn simi-
lar networks for the sam datasets, while the uci datasets re-
sult in more diverse structures. Despite this, some patterns
among the pairs of learning strategies are consistent among
both types of datasets. For example, opt8 and cl exhibit the
highest average ŜHD. On the other hand, tabu2 and opt2
are more similar than most other pairs for the uci datasets,
but not for sam datasets. This again suggests that the more



Table 2: Learning algorithms used in the study
Algorithm Parent limits Abbreviation Availability
tabu 2, 8 tabu2, tabu8 http://www.bnlearn.com/
mmhc 2, 8 mmhc2, mmhc8 http://www.bnlearn.com/
cl - cl custom
opt 2, 8 opt2, opt8 http://urlearning.org

http://www.cs.york.ac.uk/aig/sw/gobnilp/
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Figure 1: The ŜHD values for opt8 (left), tabu2 (center) and cl (right). The top row contains sam datasets, and the bottom
row contains uci datasets. The datasets are sorted in ascending number of records. Note the different scale for sam and uci.

constrained search space leads to more similar structures.

In summary for Q1, the similarity of learned network struc-
tures depends upon the nature of the training dataset. Typi-
cally, though, both within and between learning algorithms,
sam datasets result in similar learned structures, while
structures learned from uci datasets are more diverse.

6.2 Impact of Restricting Parent Set Size

We study question Q2 by comparing the ˆ̀d,l
pp among

datasets when using k = 2 and k = 8 as the maximum
number of parents for each learning algorithm. The BDeu
score implicitly restricts the maximum number of selected
parents as a soft constraint by integrating over all param-
eterizations of parent instantiations. Other scores, such as
MDL, explicitly incorporate a complexity penalty to dis-
courage large parent sets. In both cases, though, this re-
striction is a soft constraint. Here consider the maximum
number of parents as a hard constraint.

Optimal. Figure 3 (left) shows the performance (in terms
of ˆ̀d,l

pp ) of generalization using optk for parent limits k =
2, 8. The (left, top) and (left, bottom) plots show distinctly

different patterns. Figure 3 (left, top) clearly shows that
opt2 results in better generalization for sam datasets with
100 records. However, as the number of records increases,
opt8 yields better performance. In contrast, for uci datasets,
opt8 is almost always better.

Tabu. Contrasting the results for opt, Figure 3 (center, bot-
tom) shows that tabu2 generalizes better than tabu8 for uci
datasets. One possible explanation for this difference is that
the greedy strategy of tabu8 favors structures which im-
prove the likelihood while increasing the complexity of the
learned structures. Thus, the learned structure overfits the
training data and does not generalize well to testing data.
In contrast, as opt is guaranteed to find the best-scoring
structure, it finds structures which better balance training
set likelihood and complexity. The hard constraints on the
number of parents for tabu2 forbid it from selecting the
complex structures. Both tabu2 and tabu8 typically gener-
alize well on sam datasets.

MMHC. Figure 3 (right) shows that the hard parent limit
has little effect on ˆ̀d,l

pp for mmhc. The first phase of mmhc
uses a set of statistical independence tests to restrict the
learned network structures. For many of the datasets, the
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due to ŜHD being symmetric.

relatively small number of records restricts the power of
these tests and leads to a very small search space in the sec-
ond phase, despite initially allowing many more structures
for the 8-parent space.

Based on these observations, in the rest of this study we
will focus on opt8, tabu2 and mmhc8.

In summary, the answer to Q2 clearly depends both on the
training datasets and learning algorithm; the global guar-
antees of opt allow it to fully take advantage of the larger
k = 8 search space, but the local search strategy of tabu
performs better in the more restricted k = 2 space.

More data is required to accurately estimate the conditional
probability distributions for complex structures (with more
parameters). This may explain why opt2 generalizes better
than opt8 for datasets with a small number of records.

6.3 Impact of Amount of Training Data

To investigate the impact of the amount of available train-
ing data, to answer Q3 we compared how `d,lpp of opt8, tabu2
and cl behave as the number of records available for train-
ing increases. Figure 4 shows that for all algorithms on both
sam and uci datasets, more records lead to better `d,lpp . Fur-
thermore, the plots also show that with more records, the
variance of `d,lpp decreases. Interestingly, the plot also shows
that cl performs better than opt8 and tabu2 on carpo, a sam
dataset, when only 100 records are available. This again

highlights that restricted model classes can generalize bet-
ter than those with more parameters, especially when little
data is available to estimate the parameter values. Despite
the differences in guarantees, opt8, tabu2 and cl perform
similarly for carpo1 000 and carpo10 000.

As with carpo, for the uci agaricus dataset, the likelihood
improves and variance decreases as the number of records
increases. However, opt8 improves from `d,lpp ≈ 0.7 for 81
records to `d,lpp ≈ 0.48 with 812 records. In contrast, tabu2

only improves from `d,lpp ≈ 0.7 to about `d,lpp ≈ 0.55, and cl
exhibits even less improvement. For agaricus, opt8 using
only 812 records results in better generalization than tabu2

or cl with all 8 123 records.

We observed similar behavior on other sam and uci
datasets as the amount of training data was varied. Unlike
in the case of Q1 and Q2, the same general trends hold for
all algorithms and datasets with respect to Q3. Namely, the
predictive likelihood improves and variance decreases as
the size of the training set increases.

6.4 Comparison Across Learning Strategies

Finally, based on the previous results, we studied Q4 by
choosing the best learning strategies and comparing their
ˆ̀d,l
pp across all of the datasets. In essence, we fix the train-

ing set while varying the learning strategy. Additionally,
empty (with no edges) was included as a baseline. The re-
sults in Figure 5 show several expected trends and a few
surprises. As expected, empty is the worst on almost all
of the datasets. Due to its structural similarity to empty,
mmhc8 was typically worse than the other strategies. These
trends are consistent for both sam and uci datasets. For sam
datasets, tabu2 and opt8 have very similar ˆ̀d,l

pp for most
datasets; the ˆ̀d,l

pp of cl is also surprisingly similar to that
of the two more “sophisticated” strategies.

For uci datasets, opt8 continues to consistently have good
ˆ̀d,l
pp . On the other hand, cl and tabu2 exhibit much more

inconsistency in their generalization relative to opt8. For
some datasets, such as dermatology and kredit, they match
opt8; on others, such as credit and tumor,cl and tabu2 do
not generalize well. Surprisingly, cl exhibits the best ˆ̀d,l

pp

for letter, the uci dataset with the most records.

For Q4, opt guarantees consistently translate into networks
with good generalization. Algorithms with weaker guaran-
tees produce networks with inconsistent generalization.

Comments on Datasets. Besides the behavior of the learn-
ing algorithms, these results also suggest differences in
the datasets themselves. In particular, it seems that sam
datasets are “easier,” in the sense that many learning strate-
gies find networks which generalize well. On the other
hand, only the strategy with strong guarantees consistently
generalizes well on uci datasets. In some sense, this result is
not surprising. The sam data is by construction accurately
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Figure 3: The ˆ̀d,l
ppvalues for opt (left), tabu (center) and mmhc (right) with a hard limit of k = 2 and k = 8 for sam (top) and

uci (bottom) datasets. The datasets are sorted in ascending number of records. Lighter colors indicate better performance.
Close inspection of the mmhc strategies show some slight difference; however, they are difficult to discern in the scaled
image.
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y-axes for the plots. Lower values and smaller boxes are better.
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Figure 5: The ˆ̀d,l
ppvalues for the best learning strategies. The

empty network is included as a baseline. The sam datasets
are shown in the top heatmap, and uci datasets are in the
bottom. The datasets are sorted in ascending number of
records. Lighter colors indicate better performance.

modeled by a BN, while it is very unlikely that uci datasets
are faithful to any BN. These caveats are also important for
future evaluations.

7 CONCLUSIONS

In this work, we systematically evaluated the impact of
learning strategy, including choice of learning algorithm
and hard constraints on the number of parents for variables
in the network, on the properties of the learned network.
Our experiments address the four research questions intro-
duced in Section 1. In particular, we answered Q1 by show-
ing that different learning strategies result in dissimilar
structures, particularly for uci datasets. For Q2, we showed
that for small sam datasets, opt generalizes better when
constrained to 2 parents; however, for all other datasets
considered in this study, opt8 performed better. In contrast,
tabu2 almost always outperformed tabu8. Q3 had the clear-
est answer of the four questions; increasing the size of the
training set consistently both improved the predictive like-
lihood and decreased its variance across cross-validation

folds. Finally, with respect to Q4, for the datasets in this
evaluation, opt consistently results in networks with good
generalization. Nevertheless, for some of the sam datasets,
simpler strategies such as the polynomial-time Chow-Liu
algorithm yielded nearly as good generalization. In our
view, these results justify the research into learning opti-
mal BN structures in large, complex spaces.

The aim of the study was to better understand how the
combination of learning strategy and dataset affect gen-
eralization. Consequently, we deliberately disregarded the
runtime and memory usage of the studied learning strate-
gies. These are important constraints, especially for opt,
i.e., exact algorithms which provide provably optimal net-
work structures with respect to the score-based objective
function. However, the results clearly show that, whenever
possible (as long as the computational resources allow it), it
is worthwhile to use opt. Similarly, we did not evaluate the
SHD between learned network structures and a “gold stan-
dard” network because this does not directly reflect gen-
eralization. Also, trustworthy “gold standard” networks do
not generally exist for real-world datasets.

This empirical study clarifies some common assumptions
about relationship between structure learning algorithms
and learned Bayesian network structures, including em-
pirically observed conditions for strong theoretical guar-
antees translating into improved empirical results. The re-
sults suggest many interesting questions for further study.
For example, the finding that quite simple networks can
generalize well suggests that a scoring function with a
high complexity penalty, such as the Bayesian Informa-
tion Criterion (BIC), might yield networks with good pre-
dictive capabilities. Another interesting question concerns
the impact of more sophisticated restrictions on learned
networks structures. For example, recently several algo-
rithms (Korhonen and Parviainen, 2013; Berg et al., 2014;
Parviainen et al., 2014) have been proposed which find
provably optimal BNs with bounded treewidth, resulting in
networks for which exact inference is provably tractable.
As bounded treewidth represents another well-principled
approach to constraining complexity of the learned net-
works, an interesting question is whether the quality of the
learned (optimal) networks is affected by such a stringent
constraint. Other extensions of this work would be to in-
volve yet more structure learning algorithms (such as the
Greedy Equivalence Search (Chickering, 2002)), and ex-
tending from using single structure for predictive inference
to a more Bayesian approach by collecting several high-
scoring networks and averaging their predictions. Addi-
tionally, the predictive likelihood analysis is not restricted
to Bayesian networks; extensions to other generative mod-
els, like Markov random fields, would also be of interest.
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