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ABSTRACT 
In the computational theory of human vision, 
developed by D. Marr and his school, 
zero-crossings detection is proposed as one of 
the first stages of human visual information 
processing. The justif ication of this theory 
reguires that the zero crossings are rich in 
information about the original image. In a 
paper, T. Poggio, H.K. Nishihara and K.R.K. 
Nielsen stated that a successful extension of B. 
Logan's analysis to two-dimensional images 
represents one of the critical unsolved steps of 
this computational theory. Moreover, sucn an 
extension is crucial to the question of 
spatiotemporal interpolation in vision. In this 
paper, we shall provide a solution to this 
problem using a theory of spherical perspective 
and spherical harmonics. 

1. INTRODUCTION 
The goal of low level vision is to detect changes 
in the reflectance of object surfaces and in 
surface orientation, geometry and depth value. 
In computer vision or the computational human 
vision, changes in image intensity of different 
scales of resolution is the optimal indicator of 
such changes. It has been proposed that 
different scales are set by fi ltering the image 
with 2-dimensional Gaussian filters of different 
sizes [2]. Intensity changes of object surfaces 
are spatially localized at different scales. 
In the spherical model, we could extend the 
Gaussian f i l ter on the plane to a f i l ter 
(probability distribution) of Gaussian type, such 
as Fisher and von Mises filters on the sphere. It 
is quite natural to consider the exponential 
family of distributions on the sphere, because of 
its relation to spherical harmonics. We may 
consider some characterizations of the Gaussian 
to set up analogous filters in the spherical 
model . A l te rnat ive ly , we may use the 
correspondence between the image plane and 

the image sphere (see next section) to 
transform filtered planar images to scaled 
images on the sphere. That is, we may do the 
filtering in the plane first and then transform 
the filtered image to an scaled image G*I on the 
sphere. 
In both cases, zero-crossings are computed by 
finding the zero set of the spherical Laplace 
operator A on G*I . Detection of edges in an 
image is reduced to solving for zero-crossings. A 
key question is whether detected edges contain 
ful l information about the image. If we can 
reconstruct the image from detected edges, then 
the question is affirmatively answered. From 
the view point of visual information processing, 
we do not need to reconstruct the original 
image, but only to show that sufficiently enough 
information is provided. 
An extension of B. Logan's theorem to the image 
sphere wi l l be presented. Thus, the theory of 
Marr and Hildreth [2] wi l l be supported by this 
paper. The sphere is parametrized by the 
elevation and azimuth angles and Any 
square integrable funct ion f(6,<|0) may be 
decomposed into a sum of spherical harmonics 

which are products of exponentials 
and Legendre functions (special functions), 
functions of two variables and As we have 
stated earlier, this framework w i l l provide the 
appropriate extension of Logan's theorem to 
two variables. It w i l l be shown that such a 
function f can be reconstructed from the 
zero-crossings data, provided that enough of 
them are available. 

This extension of Logan's theorem is the 
theoret ical basis of zero-crossings and 
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spatiotcmporal interpolat ion. Spatiotemporal 
interpolation is proposed in [1] and other 
references quoted there. The posit ional 
accuracy in human vision, corresponding to a 
fraction of the spacing between adjacent 
photoreceptors in the fovea [1], implies the 
spatial interpolat ion. The perception of 
continuous motion requires spatiotemporal 
interpolation [1], Our extension of Logan's 
theorem addresses both the problem of spatial 
interpolation and an extension to 
for spatiotemporal interpolation. 
2. THE SPHERICAL MODEL 
The two imaging models are not very different. 
The image sphere (or hemisphere) is replacing 
the image plane tangent to it at the north pole. 
The perspective projection is extended beyond 
the image plane to the spherical perspective 
projection onto the image sphere. In [5] , a 
nonl inear t ransformat ion sets up the 
correspondence between points on the image 
plane and points on the image sphere. Image 
intensity is defined by this correspondence, 
under the Lambertian model. If we move the 
origin (viewer) of the spherical model to 
inf ini ty, the l imit is the orthographic model. 
There are other nice features of the spherical 
model. For instance, the vanishing points are 
finite points on the image sphere. 
L ike the Fourier descriptor method of 
expanding functions on in exponentials, we 

expand an image intensity function in 
spherical harmonics 

which form a basis of all square 
integrable functions on the unit sphere. There 
are other orthonormal expansions of image 
intensi ty funct ions, such as SVD and 
Karhunen-Loeve expansions; however, all the 
nice properties of Fourier descriptors are lost. 
This spherical harmonics expansion carries the 
group invariance over and forms a natural 
setting in the group representation theory of 
modern physics [5]. 

Each spherical harmonic is the product 
for each k. In fact, 

there is a vector space spanned by for 

each The Legendre function is 
presented in [5] . For any square integrable 

we have 

These coefficients can be calculated numerically 
and lookup tables are constructed to speed up 
numerical work invo lv ing wi th Legendre 
functions. In a distance is defined 
for equivalent shape classes and , Thus, 
object recognition is performed in a standard 
fashion. If and have respectively Fourier 
coefficients and then the 
minimum of the vector 
over all rotations R, symmetries s and scalings 
S, is the distance between and 
3. ZERO-CROSSINGS 
The first order differential operators on the 
sphere are given by three basis operators 

The effect of these three differential operators 
on spherical harmonics is given by 

The spherical Laplace operator is computed to 
act on by 

Thus, the Laplace operator is a scalar matrix 
when restricted to the subspace 

for each This is a very nice 
feature of the spherical model. 

The correspondence between on the 
image plane and on the image sphere is 
given by the nonlinear transformation between 
the image plane at the north pole and the 
sphere. The image intensity function is 
conveniently defined as the image intensity 
function under this correspondence. This 
is a reasonable assumption near the fovea in 
human vision or near the optical axis in 
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computer vision because the plane is tangent to 
the sphere. For peripheral views or wide 
viewing angles, problems arise and we need to 
rotate our eyeballs or cameras. This amounts to 
a rotation of the sphere and its tangent plane at 
the north pole. 
Since the Gaussian filter (distribution function) 
in [2] is to set up different scales of resolution, 
it is quite reasonable to project the 
2-dimensional Gaussian f i l ter on the plane 

to a 
filter on the sphere 

Now, we consider The zero set is the 
zero-crossings of I in the spherical model. The 
blurred image may be expanded in terms of 
spherical harmonics: 

Thus, zero-crossings are given by solutions of 
the following nonlinear equation 

fo rm determinants of max imum rank. 
Consequently, the image intensity function 

is recovered from the spherical harmonics 
expansion whose coeff icients are 

determined by the above systems of N 
equations. 
THEOREM. Under suitable conditions, image 
intensity functions in the spherical model may 
be recovered up to multipl icative constants 
from their zero-crossings data. 
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