Computer Science > Robotics
[Submitted on 16 Nov 2023 (v1), last revised 28 Jun 2024 (this version, v2)]
Title:Scalable Multi-Robot Motion Planning Using Guidance-Informed Hypergraphs
View PDF HTML (experimental)Abstract:In this work, we present a multi-robot planning framework that leverages guidance about the problem to efficiently search the planning space. This guidance captures when coordination between robots is necessary, allowing us to decompose the intractably large multi-robot search space while limiting risk of inter-robot conflicts by composing relevant robot groups together while planning. Our framework additionally supports planning with kinodynamic constraints through our conflict resolution structure. This structure also improves the scalability of our approach by eliminating unnecessary work during the construction of motion solutions. We also provide an application of this framework to multiple mobile robot motion planning in congested environments using topological guidance. Our previous work has explored using topological guidance, which utilizes information about the robots' environment, in these multi-robot settings where a high degree of coordination is required of the full robot group. In real-world scenarios, this high level of coordination is not always necessary and results in excessive computational overhead. Here, we leverage our novel framework to achieve a significant improvement in scalability and show that our method efficiently finds paths for robot teams up to an order of magnitude larger than existing state-of-the-art methods in congested settings with narrow passages in the environment.
Submission history
From: Courtney McBeth [view email][v1] Thu, 16 Nov 2023 20:06:09 UTC (1,431 KB)
[v2] Fri, 28 Jun 2024 20:19:31 UTC (1,807 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.