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ABSTRACT 

Bundy. Silver and Plummet (1985) provide an analysis of 
the Focussing algori thm and the Classification algorithm in 
the case where the description space consists of a set of 
relation trees. This paper discusses an extension to their 
analysis in which the description space is construed as a 
geometric space. Under this construal the behaviour of both 
the Focussing algori thm and the Classification algorithm is 
analysed in terms of the construction of hypercuboids. This 
analysis leads to a number of observations: ( i ) that a dis­
t inction can be made between a strong and a weak version 
of the disjunctive-concept problem; ( i i ) that certain solutions 
to the disjunctive-concept problem can be shown to exploit 
what are, in effect, distance functions over the description 
space and ( i i i ) . that the Classification algorithm is only 
capable of learning a subset of the possible disjunctive con­
cepts in any given domain. 

1. Introduction 

In the interpretation of the Focussing algorithm presented 
by Bundy et a l . ( ibid.) the description space consists of a 
set of relation trees and execution of the algorithm involves 
the manipulat ion of upper markers (which collectively 
define the most general f o rm of the concept being learned) 
and lower markers (which collectively define the most 
specific f o rm of the concept being learned). The fo rm of 
this marker-manipulat ion is reasonably simple: fo l lowing 
the presentation of a new positive instance, one or more 
lower markers may be raised so that the most specific fo rm 
of the concept covers the new instance: fo l lowing the 
presentation of a new negative instance, an upper marker 
may be lowered so that the most general f o rm of the con­
cept no longer covers the new instance. 

In an alternative interpretation (Thornton 1987) the descrip­
t ion space is a geometric space and execution of the algo­
r i t hm involves the shrinking of an outer hypercuboid 
(which defines the most general f o rm of the concept being 
learned) and the expansion of an inner hypercuboid (which 
defines the most specific f o rm of the concept being learned). 
Hypercuboid-manipulations correspond to marker-
manipulations in the obvious way: fo l lowing presentation of 
a new positive instance, the inner hypercuboid may be 
expanded so as to enclose the point which corresponds to 
the new instance; fo l lowing presentation of a new negative 
instance, the outer hypercuboid may be shrunk so as to 
exclude the point which corresponds to the new instance. 

To help c lar i fy this alternative interpretation two descrip­
tions of the behaviour of the Focussing algorithm w i l l be 
contrasted. The first of these descriptions w i l l invoke the 
standard, marker-oriented interpretation: the second w i l l 

Suppose that a description space consists of two trees called 
"A and "B" whose structure is as depicted in Fig. 1. 
(Instances in this description space are simply conjunctions 
of t ip nodes taken f rom trees A and B; e.g. A2 & B3.) The 
Focussing algori thm is presented w i t h a sequence of four 
instances f r om this description space: < A 2 & B2. A3 & B2. 
A2 & B l . Al & B 2 > . The f i rs t two elements are positive 
instances of the concept to be learnt and the second two 
are negative instances. Presentation of the first positive 
instance (i.e. init ial isation) causes the placing of upper 
markers at the root nodes of both trees and lower markers 
at the appropriate t ip nodes (A2 & B2). Presentation of the 
second positive instance (A3 & B2) causes the lower marker 
in tree A to be raised to the parent of A2. Presentation of 
the first negative instance (A2 & B l ) causes the upper 
marker in tree B to be lowered and presentation of the 
second negative instance ( A l & B2) causes the upper 
marker in tree A to be lowered. The positions of markers 
at this point are as depicted in Fig. 1. 

The hypercuboid-oriented interpretation of the behaviour of 
the algorithm in this case is as fo l lows. We say that the 
description space has t w o dimensions called "A" and "B" 
which range over the values ( A l . A 2 . A3} and { B l . B2. B3) 
respectively. Presentation of the first positive instance ( i n i ­
tialisation) triggers the construction of an inner hypercuboid 
enclosing the A2 /B2 cell and an outer hypercuboid enclosing 
the entire space. Presentation of the second positive instance 
causes the inner hypercuboid to be expanded so as to 
include the A3 /B2 cel l . Presentation of the two negative 
instances cause the outer hypercuboid to be shrunk to 
exclude both the A1/B2 and A2 /B1 cells. The structure of 
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the inner and outer hypercuboids at this point is as shown 
in Figure 2. (The outer hypcrcuboid is drawn using "*" 
characters: the inner hypercuboid is drawn using V charac­
ters.) 

Note that the sequence of instances described does not 
enable the Focussing algorithm to construct a fully-specified 
concept: the most general form of the defined concept is not 
identical to the most specific form. Under the standard 
interpretation the evidence for this is the fact that one set 
of markers do not coincide (i.e. one of the trees is not 
firmed-up). In the hypercuboid-oriented interpretation the 
evidence is the fact that the hypercuboids are not identical. 

2. The disjunctive-concept problem 

Bundy et al. show that there are sequences of positive and 
negative instances which, when presented to the Focussing 
algorithm, will cause upper markers to be moved below 
lower markers or lower markers to be moved above upper 
markers. Such an event corresponds to the emergence of an 
inconsistency and the failure of the algorithm. This problem 
is frequently referred to as the disjunctive-concept problem 
on the grounds that such sequences may be associated with 
disjunctive concepts. 

An inconsistency (i.e. the inversion of an upper and a 
lower marker) is described, under the hypercuboid-oriented 
interpretation, as the situation which arises when an inner 
hypercuboid boundary extends beyond an outer hypercuboid 
boundary. Viewing inconsistencies in this way leads to the 
observation that (i) there are precisely two situations which 
will cause inconsistencies to arise and (ii) that these situa­
tions will always lead to inconsistencies regardless of the 
order in which instances are presented. 

Fig. 3 

Consider Fig. 3 which shows the geometric form of the pre­
viously defined description space. Positive instances are dep­
icted as "Ps": negative instances are depicted as "Ns". Two 
positive instances are depicted (PI and P2) and one negative 
instance (Nl). 
Note that as things stand it is impossible to construct a 
hypercuboid which encloses all the Ps and excludes all the 
Ns: clearly, any hypercuboid which encloses all the Ps must 
extend beyond a hypercuboid which excludes all the Ns. 
Translated into the standard interpretation, this observation 
says that, in any set of (upper and lower) markers which 
both cover all the positive instances and exclude all the 
negative instances, there will be at least one lower marker 
which is above an upper marker. Presentation of the 
corresponding set of instances will therefore inevitably lead 
to an inconsistency regardless of the presentation schedule. 

If the only positive instance was P2, a valid hypercuboid 
(i.e. one which encloses all the Ps and excludes all the Ns) 
could be constructed, but not by the Focussing algorithm. 
The reason is very simple. The Focussing algorithm actually 
manipulates markers not hypercuboid boundaries and its 
boundary-manipulation capabilities are therefore constrained. 
It can locate boundaries at positions X and Y in some 
dimension D if and only if the values of D falling between 
X and Y are descended from a unique node in a tree of 
the underlying tree-based description space. The values in 
the singleton set {B3( are not descended from a unique node 
in the tree-based description space, therefore hypercuboid 
boundaries cannot be positioned so as to enclose them. 
Since any valid hypercuboid for {P2. Nl} must have such 
boundaries, we can infer that the Focussing algorithm can­
not construct a valid hypercuboid for this set of instances. 

The Focussing algorithm then can fail either because (i) the 
valid hypercuboid does not exist or because (ii) it cannot be 
constructed due to constraints on boundary manipulations. 
In either of these situations failure will occur regardless of 
presentation schedules. 

A useful distinction can therefore be made between two 
different versions of the disjunctive-concept problem: a 
strong version corresponding to situation (i) and a weak 
version corresponding to situation (ii). Drawing this distinc­
tion leads to the observation that techniques such as the 
"least-disjunction" procedure (Utgoff 1985) and "tree-hacking" 
(Bundy et al. 1985) which, in effect, alter the set of pos­
sible boundary positions by introducing novel disjunctions 
into the underlying description space, can alleviate the weak 
version of the disjunctive-concept problem but not the 
strong version. 

3. Assignment heuristics 

A modification of the Focussing algorithm which is capable 
of learning disjunctive-concepts is associated with Mitchell 
et al. (1983). This technique (called Shell Creation by 
Bundy et al. 1985) involves the construction of what are. 
in effect, multiple sets of markers (i.e. "rule-shells"). Under 
the hypercuboid-oriented interpretation this technique 
corresponds to the construction of sets of inner and outer 
hypercuboids (Thornton 1987). 

Note that, in the case where multiple inner and outer 
hypercuboids have been constructed, the presentation of a 
new instance does not have deterministic consequences. If 
the new instance is a positive instance, then an inner 
hypercuboid may have to be expanded to enclose it. If the 
new instance is a negative instance, then an outer hypercu­
boid may have to be shrunk to exclude it. The question is 
(in both cases): which particular hypercuboid should be 
chosen? 

Bundy et al. have noted that there appears to be no infalli­
ble way of choosing how to assign new instances to existing 
hypercuboids/rule-shells (1985, p. 170). The conclusion 
seems to be that assignments must be carried out using a 
heuristic. 
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There are obviously many possible assignment heuristics 
that might be used; however we can imagine a completely 
general heuristic which computes preferences for assignments 
on the basis of explicit features of the data (i.e. which does 
not employ domain-knowledge). It can be shown that the 
preferences computed by this heuristic must satisfy certain 
criteria. (We consider the case where there are two denned 
"points" in the description space named P1 and P2.) 

We can assume that the completely general heuristic (like 
any other heuristic) must behave systematically. Therefore 
(i) the computed preference for assigning an instance occu­
pying P1 to a hypercuboid enclosing P2 must be identically 
equal to the computed preference for assigning an instance 
occupying P2 to a hypercuboid enclosing P1: (ii) the com­
puted preference for assigning an instance occupying P1 to a 
hypercuboid enclosing P1 must have a maximum value, 
since the limiting case is the assignment of an instance to a 
single-cell hypercuboid which already encloses it. 

In addition, we can infer that preferences generated by the 
heuristic must be intrinsically coherent. This means that the 
computed preference for assigning an instance occupying P1 
to a hypercuboid enclosing P2 must not be outweighed by 
the computed preference for assigning P1 first to some 
intermediate hypercuboid. and then on to the one enclosing 
P2. If computed preferences were of this sort, then we 
would be able to increase our level of preference for any 
particular assignment simply by devising ever more ela­
borate assignment schedules. 

Any heuristic which satisfies these criteria must exploit 
what is. in effect, a valid distance function over the 
description space. Presented with any two points in the 
description space, the heuristic must be capable of generating 
a distinct level of preference for assigning one of the two 
points to a hypercuboid enclosing the other. This level of 
preference, interpreted as a measure of distance, satisfies all 
the axioms for a mathematical distance function, including 
triangle inequality, reflexivity and symmetry. 

4. The Classification algorithm 

Bundy et al. (ibid.) note that the Classification algorithm, 
associated with Quinlan (1983) and Hunt (1966). is capable 
of dealing flawlessly with disjunctive concepts. In their 
presentation of this algorithm, the description space is an 
attribute-value space and the action of the algorithm 
involves (an iteration of) the selection of an attribute A 
followed by the splitting of the instances (which are all 
given in advance) into sets, such that all the instances in a 
given set have the same value of A. This process terminates 
when every set of instances contains either uniformly posi­
tive or uniformly negative instances. The structure of attri­
bute choices forms a decision tree (i.e. disjunctive rule) for 
the concept underlying the instances. 

In the hypercuboid-oriented interpretation of this algorithm 
(Thornton 1987). the description space is a geometric space 
consisting of K dimensions each of which ranges over the 
possible values of a single attribute. Instances correspond to 
points in the normal way. Initialisation of the algorithm 
corresponds to the construction of a single hypercuboid 
which encloses all the points in the description space. This 
hypercuboid is then subdivided into K hypercuboids. where 
K is the number of values of the chosen attribute. Any of 
the K hypercuboids which do not contain uniform instances 
are then further subdivided. The division process continues 
until all hypercuboids contain instances which are either 

uniformly positive or uniformly negative. 

Note that a hypercuboid constructed by the Classification 
algorithm will have boundaries which, for each dimension 
D. enclose either a single value of D or the complete range 
of D. In other words, the boundaries in any one dimension 
of a hypercuboid formed by the Classification algorithm 
must, by definition, be either maximally close or maximally 
distant. 

If we consider the entire set of possible hypercuboids which 
can be constructed in any given geometric space of a rea­
sonable size, and compare it with the set of hypercuboids 
which can be constructed in the same space using boun­
daries which are of the described form, we will conclude 
that the size of the former set is overwhelmingly greater 
than the size of the latter set. The implication is that the 
Classification algorithm can only construct a small propor­
tion of the possible hypercuboids in any given space and 
must therefore be assumed to be only capable, in general, 
of constructing a small proportion of the possible disjunc­
tive concepts for a given domain. 

5. Summary 

We have shown that under the hypercuboid-based interpre­
tations of the Focussing algorithm and the Classification 
algorithm a number of possibilities emerge: (i) a simple 
account of the disjunctive-concept problem can be presented; 
(ii) a distinction can be made between a strong and a weak 
version of the problem; (iii) techniques such as tree-hacking 
can be shown to alleviate only the weak version; (iv) solu­
tions to the problem which involve the construction of 
multiple hypercuboids and the exploitation of completely 
general assignment heuristics can be shown to exploit what 
are. in effect, valid distance functions over the description 
space; (v) the Classification algorithm can be shown to be 
capable of forming only a subset of the possible disjunctive 
concepts for a given domain. 
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