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Abstract
1. fort=1,2,...do
Most of the research in online learning focused ei- 2:  Asamplez; % P is revealed to both the learner anfd
ther on the problem of adversarial classification the adversary
(i.e., both inputs and labels are arbitrarily chosen 3 Simultaneously, .
by an adversary) or on the traditional supervised - Adversary chooses a loss function: Y — [0, 1]

- Learner chooses a hypothegisc H
4:  Learner predictg; = hi(z) € Y
5:  Learner observes the feedback:

- L+(y:) (in case obanditinformation)

learning problem in which samples are indepen-
dently generated from a fixed probability distribu-
tion. Nonetheless, in a number of domains the re-

lationship between inputs and labels may be adver- - or 4;(-) (in case offull information)
sarial, whereas input instances are generated ac- 6: Learnerincurs a loss (7:)
cording to a constant distribution. This scenario 7: end for

can be formalized as an hybrid classification prob-
lem in which inputs are stochastic, while labels are
adversarial. In this paper, we introduce this hy- Figure 1: The protocol of the general hybrid stochastic-
brid stochastic-adversarial classification problem, adversarial setting.

we propose an online learning algorithm for its so-
lution, and we analyze its performance. In particu-
lar, we show that, given a hypothesis spatwith
finite VC dimension, it is possible to incremen-
tally build a suitable finite set of hypotheses that
can be used as input for an exponentially weighted
forecaster achieving a cumulative regret of order
O(y/nVC(H)log n) with overwhelming probabil-
ity. Finally, we discuss extensions to multi-label
classification, learning from experts and bandit set-
tings with stochastic side information, and applica-
tion to games.

profile (e.g., sex, age, salary, etc.). In the medium-tesar u
profiles can be well assumed as coming from a fixed proba-
bility distribution. In fact, features such as age and sedae
almost constant and their distribution in a sample set does
not change in time. On the other hand, user preferences
may rapidly change in an unpredictable way (e.g., because
of competitors who released a new product). This scenario
can be formalized as a classification problem with stocbasti
inputs and adversarial labels. Alternatively, the probtzm

be casted as a two-player games in which the structure of the
game (i.e., the payoffs) is determined by a stochastic event
. x (e.g., a card, a dice). Each player selects a straliety-

1 Introduction fined over all the possible events and plays acti¢n). In

Motivation and relevance. The problem of classification ~— 9eneral, the resulting payoff is a function of the actiond an
has been intensively studied in supervised learning both in the stochastic event The Nash equilibrium in such a game
the stochastic and adversarial settings. In the formeutqp 1S @ pair of mixed strategies (i.e., a probability distribot
and labels are jointly drawn from a fixed probability distri- ©OVer the set of pure strategies) such that their expected pay
bution, while in the latter no assumption is made on the way off (where expectation is taken on strategies randomiaatio
the sequence of input-label pairs is generated. Although th @nd the event distribution) cannot be improved by unilatera
adversarial setting allows to consider a wide range of prob- déviations from equilibrium strategies.

lems by dropping any assumption about data, in many appli- Definition of the general problem. More formally, we con-
cations it is possible to consider an hybrid scenario in Whic sider the general prediction problem summarized inpifoe
inputs are drawn from a probability distribution, while la- tocolin Figure 1. At each rountlan inputz; is drawn from a
bels are adversarialy chosen. Let us consider a problem infixed distributionP (unknown from the learner) and revealed
which a company tries to predict whether a user is likely to to both the learner and the adversary. Simultaneouslydhe a
buy an item or not (e.g., a new model of mobile phone, a versary chooses a loss functinand the learner chooses a
new service) on the basis of a set of features describing herhypothesis:, in a set of available hypothesgsand predicts



Yyt = hi(zy). The feedback returned to the learner can be
either the loss functio#; (i.e., full information) or just the 1: fort=1,2,...do
loss¢,(y:) of the chosen prediction (i.éoanditinformation). 2:  Asamplez; % P is revealed to both the learner anfd
The objective of the learner is to minimize her regret, that i the adversary
to incur a cumulative loss that is almost as small as the one| 3:  Simultaneously,
obtained by the best hypothesis#kfion the same sequence - Adversary chooses a labgl € Y
of input-label pairs. More formally, for any > 0, the regret - Learner chooses a hypothesise H
of an algorithmA is 4:  Learner predicty, = hi(z:) € Y
N N 2: gﬁt is revgaled (05, 70) = 15 # e}
: earner incurs a los&7:, y:) = 1{J: # y+
RnA = ét I’Lt Tt — inf éthxt 5 1 .
(A) ; (he(ze)) heH; (h(z¢)) 1) 7: end for

whereh, is the hypothesis chosen byat timet.
Results so far. Many theoretical results are available for a Figure 2: The protocol of the hybrid stochastic-adversaria
number of online learning algorithms in the adversarial set classification problem.
ting with full information. Given a finite set oiV experts
(i.e., hypotheses) as input, at each round the Expongntiall
Weighted Forecaster (EWF) [LW94, CBF197, Vov98] ran- this paper, we analyze the problem of prediction in case of
domizes on experts’ predictions with a probability concen- stochastic inputs and adversarial loss functions. In 8e&;j
trated on experts which had a good performance so far (i.e.,we consider a specific instance of the general problem, that
low cumulative loss). Despite its simplicity, the EWF askis IS the problem of binary classification with full informatio
an upper-bound regret 6f(v/nIog N), wheren is the time In Section 3 we devise an epoch-based algorithm that, given
horizon of the problem. Although the mild dependency on @ hypothesis sét as input, incrementally builds a finite sub-
the number of experts allows to use a large number of ex- Set of / on the basis of the sequence of inputs experienced
perts, the EWF cannot be directly extended to the case ofSo far. At the beginning of each epoch, a new subs@t &f
infinite sets of experts. Many margin based algorithms with generated and it is given as input to a EWF which is run until
linear hypotheses have been proposed for adversarial clasthe end of the epoch. Because of the stochastic assumption
sification [Ros58, WW99, CS03]. The simplest example of about the generation of inputs, the complexity of the hypo-
this class of algorithms is the perceptron [Ros58] in which a thesis spacé( can be measured according to the VC dimen-
weight matrix/ is updated whenever a prediction mistake sion instead of the Littlestone dimension like in the agitost
is made. The number of classification mistakes of the per- online learning algorithm. As a result, the algorithm perfo
ceptron is bounded [FSSSU06] iy + D + LD where mance can be directly obtained by merging the EWF per-
L is the cumulative loss and is the complexity of any ~ formance in the adversarial setting and usual capacity mea-
weight matrix. In the linearly separable case (i.e., input- Sures for hypothesis spaces in stochastic problems (eeg., t
label pairs can be perfectly classified by a linear predictor VC dimension). The resulting algorithm is proved to incur
that isL = 0), the number of mistake is finite (for any time @ regret of ordeO(y/nV C(H)logn) with overwhelming
horizonn) and depends on the complexify of the weight probability. A number of extensions are then considered in
matrix corresponding to the optimal predictor. The agnos- Section 4 for multi-label prediction, bandit informatiand
tic online learning algorithm recently proposed in [SS08] games with stochastic side information. Section 5 compares
successfully merges the effectiveness of the EWF with the the proposed algorithm with existing online learning algo-
general case of an infinite hypothesis &t Under the as- rithms for the stochastic or adversarial setting. Finahy,
sumption that the Littlestone dimension [Lit88] &fis finite Section 6 we draw conclusions.
(Ldim(H) < o0), it is possible to define a suitable finite
subset of the hypothesis space such that the EWF achieves2 The Problem
regret of the order 0O (Ldim(H) + /nLdim(H) logn).

The problem of classification with bandit information (also
known as contextual bandit problem) is of major interest
in applications in which the true label is not revealed and

only the loss for the chosen label is returned to the learner L . J o o
(e.g., recommendation systems). This scenario is analyzed@P€!S- The learner is given as input a (possibly infinit¢) se
. of hypotheses of the fora : X — ), mapping any pos-

in [LZ07] in the fully stochastic setting. They introduce an " ~" " ; :
epoch-based online learning algorithm whose regret can be5|ble input to E/i label. We define the distance between two
hypotheses, h' € H as

bounded by merging supervised sample bounds with bandit
bounds. In [KSST08] a modification of the perceptron is A(h W) =Eypop [[{h(z) # W (2)}], @)
proposed (i.e., thbanditror) to solve the online multi-label

classification problem in the fully adversarial case. Irtigar (wherell {¢} = 1 when event is true, and 0 otherwise) that
ular, they analyze the performance of the banditron in termsis, the probability that: and ' have different predictions
of mistake bounds with particular attention to the linearly given inputs drawn fronP.

separable case. The protocol. The on-line classification problem we con-
What we have done While all the previous approaches con- sider is summarized in Figure 2. The main difference with
sider either the fully adversarial or fully stochastic sejf in the general setting (Figure 1) is that at each routite ad-

Notation. In this section, we formally define the problem of
binary classification and we introduce the notation used in
the rest of the paper. Let be the input spaced? a proba-
bility distribution defined ont, andy = {0, 1} the set of



versary chooses a labg] !, and the learner incurs a loss
(Y, yi) defined ag {y; # y.}. In the following, we will use
the short forn?; (h) for £(h(x¢),y:) with h € H. Since at the
end of each round the true lahglis explicitly revealed (i.e.,
full informationfeedback), the learner can compute the loss
for any hypothesis irt{. The objective of the learner is to
minimize regret (1). As it can be noticed, the I1ds&:,) is a

random variable that depends on both the (randomized) algo-

rithm and the distributior?. All the results obtained in the
following will be stated in high-probability with respea t
these two sources of stochasticity. In the next sectionywe i

troduce the Epoch-based Stochastic Adversarial (EStochAd Figure 3: The hypothesis spa@é can be partitioned into

forecaster for the classification problem with stochastic i
puts and adversarial labels.

3 Hybrid Stochastic-Adversarial Algorithms

3.1 Finite hypothesis space

Before entering in details about the algorithm, we briefly re
call the EWF with side information with a finite number of
experts. Let the hypothesis spaiecontain N < oo hy-
potheses (i.e., experts). At tinte for each hypothesig;
(te{1,...,N}), aweight is computed as

i—1
wl = exp <—nZ£3(hi)>
s=1

wheren is a strictly positive parameter. According to the pre-
vious definition, the smaller the cumulative loss the higher
the weight for the hypothesis. At each stem loss func-

3)

tion ¢, is adversarialy chosen and at the same time, the EWF

draws a hypothesis; from a distributiorp® = (pt, ...

t
wherep! = —x—

t
apN)’
As aresult, itincurs a losg (k). At

wt”

classes containing hypotheses with the same sequence of
prediction on inputgy. The gridH,, is obtained by selecting
one hypothesis for each class of the partition.

of t (see e.g. [ACBFSO03]). As it can be noticed, the EWF
has a logarithmic dependency on the number of experts, thus
allowing to consider large sets of experts. Nonetheless, th
EWF cannot be directly applied whét contains an infinite
number of hypotheses. In next sections we show that when
inputs are drawn from a fixed distribution and the hypothesis
space has a finite VC dimension, it is possible to incremen-
tally define a finite subset @ that can be used as input for

a EWF with a regret similar to (4).

3.2 Infinite hypothesis space

Sequence of inputs known in advance.First, we show
that for any finite VC dimension hypothesis spdgeand
any sequence of inputs, it is possible to defindiimdsight
a finite subsetd C H that contains hypotheses with ex-
actly the same performance as those in the full?éetLet
VC(H) = d < oo andx} = (z1,...,z,) be a sequence

the end of each round, weights are updated according to (3).0f inputs drawn fromP. On the basis ok}, we define a
The following result provides an upper-bound on the regret partition, = {H;};<y of 1, such that each clags; con-

for EWF .

Theorem1 [CBLO6] Letn, N > 1,0 < 3 <1,n>0
andw! = 1,i € {1,...,N}. The exponentially weighted
average forecaster satisfies

R, = Zét(m)—}gﬁzet(m
t=1 t=1

logN nn n 1

< - = —

< t 5 +\/210gﬁ7

with probability at leastl — 3. Optimizing the parameter

n = v/2log N/n, the bound becomes

/ 1
R, <+v2nlogN + glogﬁ.

The implicit assumption in the previous theorem is that the
time horizonn is known in advance. As usual, it is possi-
ble to obtain an anytime result for the previous algorithm by
setting the learning parametgto be a decreasing function

(4)

In the general case of a non-oblivious adversgrymay de-
pend on past inputéz; } s+, predictions{7 }s<:, and current in-
pUt.’I)t.

tains hypotheses with the same sequence of predictions up
totimen (i.e.,Vh,h' € H;, h(zs) = h'(zs),s < n). From
each class we pick an arbitrary hypothesjs= H; and we
define the gridd,, = {h;}i<n. SinceH has a finite VC di-
mension, for any: > 0 the cardinality ofH,, is bounded by

N = |H,| < (2)" < o0 [BBLO4]. The grid H built from
partitionP of H can also be incrementally refined as inputs
are revealed. For instance, after observing H is parti-
tioned in two classes containing hypotheses which predict 0
in x; and those which predict 1 respectively. The &t

is obtained by choosing arbitrarily any two hypotheses from
the two classes. As new inputs are observed each class is
further split (see Figure 3) and afterinputs the hypothesis
space is partitioned into at moSt(n?) classes. FinallyH,,

is obtained by taking one hypothesis from each class. As a
result, for any hypothesis i there exists a corresponding
hypothesis inH,, which has exactly the same sequence of
predictions orx} and, thus, the very same performance.

Lemma 2 Let H,, be the grid defined above, then

> () nin > (),
t=1 "t=1

that is, the performance of the best hypothesigionx} is
exactly the same obtained by the best hypothedis,in

()

inf
heH



According to the previous lemma, if the sequence of in-

we prove that the regret (6) is bounded ©y+/ndlogn’)

puts is available before the learning to take place, then thewith high probability.

regret defined in (1) (that compares the cumulative loss of
the learner to the performance of the best hypothesis in the

full set H) can be minimized by a EWF run oH,, thus
obtaining exactly the same performance as in Theorem 1.
Lemma 3 Let a sequence of inputsy,...,x, “ P be
available before learning and let/,, be the grid defined
above, then

1
R, < \/2ndlog% + \/g log -

with probability1 — .

Proof: The lemmaimmediately follows from Lemma 2, The-
orem 1, andV < (%)d. ]

Sequence of auxiliary inputs.Unfortunately, the sequence
of inputsx? is rarely available beforehand, thus preventing

from building H,, before the actual learning process starts.

Let

Auh W)= S S Hh) £ R @)} ()
t=1

be the empirical distance between two hypothésés € H
on a sequence of inputg (and define similarly\,,; (h, 1)
as the empirical distance aéfandh’ on inputs(x’)?’). The
following result states the uniform concentration propeft
A,, around its expectatioA.

iid

Lemma 4 For any sequence of inpuis, ..., z, ~ P

2dlog % + log %
sup e
(h,h")eH?

with probability1 — .

|A”L(h7 h,)_A(h7 hl)l S En = 2\/2

n

Proof: A, (h,h')andA(h, h') are the empirical average and

Nonetheless, in the following we show that in case of stochas expectation of the random variablg h(z) # h'(x)} with
tic inputs, the learner can take advantage of any sequence of; ~ P, which is bounded if0,1]. The pair(h, /') be-

inputs drawn from the same distributidhto build a setH

longs to the set{? whose VC dimension i$/C(H?) <

that can be used as input for a EWF . We will further show 2/ (1) = 2d. Therefore, we deduce the stated uniform

in Section 3.3 that we do not even need to know a sequenceconcentration property (see e.g., [BBL04])
of auxiliary inputs beforehand and the mere assumption that

inputs are drawn from a fixed (and unknown) distribution is
sufficient to learn efficiently.
But first, let us assume an auxiliary sequence’ofputs

(X' = («},...,2,) is available to the learner before the
classification problem actually begins andg}l be the grid

of H built on inputs(x’){‘/. The regret of EWF with experts
in H,, can be decomposed as

R, = ;et(ht)—]%g%;et(h)

. AN
+ (hrggl ; L) = inf tz ft(h)>
= Rgwr + Ry, (6)

whereRgw r is the regret due to EWF anély comes from
the use off,,. instead of the full hypothesis spate While

the first term can be bounded as in Theorem 1, the second

term in general is strictly positive. In fact, sinég,. is dif-
ferent from the sef/,, that would be created according to
inputsx?y, equality (5) does not hold faff,,,. In particular,

Using the previous lemma, it is possible to bound the dif-
ference in performance between the best hypothesis,in
and the best ifi{, and bound the regret in (6).

Theorem 5 For any0 < n < n/, let H,» be a set of hy-
poheses built according to an auxiliary sequence of inputs

T, ¢ p. An EWF with experts iff,,, run onn

new samples drawn from distributidhincurs a regret

/ ! / 12
R, <c ndlog% + co glogg

with probabilityl— 3, wherec; = (8 4+ v/2), andes = 9v/2.

(8)

Proof: In (6) the regret is decomposed in two terms. By
bounding the first term as in Theorem 1, we obtain

/ ! / 1
R, < Qndlog%—i— glogg

. ’ .
+ <hr2}? ;&(h ) — ;i?%;ét(h)> :

where the number of hypothesedihy is bounded byH,,. | <
(en’ /d)". Since the sequence of inpyts, ...,z ) isdrawn

in the fully adversarial case, the sequence of inputs could from the same distribution as that revealed during the tearn

be chosen so that hypothesedil, have an arbitrarily bad
performance when used to learnxh(e.g., if the learner is
shown the same input for’ steps,H,,, would contain only
two hypotheses!). The situation is different in our hybrid
stochastic-adversarial setting. In fact, since all theutap
are sampled from the same distributiém H,,/ is likely to

contain hypotheses that are good to predict on any other se-

guence of inputs drawn fron®?. Therefore, under the as-
sumption that’ inputs can be sampled frof beforehand,

ing process, the second term can be bounded as follows

IN

sup min nA,(h,h')
heH M eH,,

©)



Algorithm 1 The Epoch-based Stochastic Adversarial (ES-
tochAd) forecaster

Input : hypothesis set
Initialize : Hy = () with anyh € H
for k=0,1,2,...do
Sett, = 2k, thy1 = 2k+1, N = |Hk|, andnk

\/ 2 log Nk/nk
Initialize wi* =1, i€ {1,...,
for t = t, totr1 — 1do
Observer,
Sampleh; ~ pt, with p; = wt/(27 L wh)
Predicty, = h;(x¢)
Observe the true labe}
Update weightso! ™' = w exp (—nile(h;))
end for
Build Hy.1 according to inputgzy, . . .
end for

N}

y Ltpqn *1}

IN

sup min nA(h,h') + ne,
heH M EH,

sup mln nAu (hy ') + ney + ne, (11)
her W€
04 ney, —|— ney

\/ 2dlog < en’ +log 7

4\/4nd10g— + 4,/2n10g

with probabilityl —23’. From the definition of the empirical
distance in (7), we directly get (9). In fact, two hypotheses
have different loss whenever their prediction is differdnt
both (10)-(11) we applied Lemma 4. The minimum distance
A,/ (h,h') in (11) is zero for any hypothesis€ H. In fact,
sinceH,, is built according to the same inputs}, ..., z.)
on which A,/ (h, k') is measured, it is always possible to
find a hypothesié’ € H, with exactly the same sequence
of predictions as anyt € H. Finally, (12) follows from the
assumptiom’ > n and from the definition of,, ande,,. in
Lemma 4.

By joining the bound foR g and Ry, and by setting
(3 = 33" we obtain the statement of the theorem. [ |

(10)

IN

IN

IN

(12)

IN

3.3 The Epoch-based Stochastic Adversarial
(EStochAd) Forecaster

In the previous section we assumed a sequence of inputs

(1,-..,2,) could be sampled fron#” before starting the

learning process. However, this assumption is often unre-

alistic when the distributior” is unknown and inputs are
revealed only during the learning process. In this sectien w

devise an epoch-based algorithm in which the hypothesis set

is incrementally built in epochs according to the inputs ex-
perienced so far.

Let us divide the learning horizon int& epochs, such
that epochk is ny, = ty11 — 1, Steps long, from time = ¢,
totr+1—1. Atthe beginning of epoch, a grid Hy, is build on
the basis of the sequence of inprfs and a EWF forecaster

is run on Hy, until the end of epoclt. The resulting algo-
rithm is summarized in Algorithm 1. As it can be noticed,
EStochAd is an anytime algorithm since the time horizon
does not need to be known in advance. In fact, the learning
parameter is set optimally at the beginning of each epoch,
independently from the value of

According to Theorem 5, whenevég > nj the re-
gret of an EWF with experts i/, and parametery

v/2log N /ny in epochk is

trp1—1 tryr1—1

Ri= ) G(h) = jnf > (D)

t=ty t=ty

q/nkdlogj + co

with probability 1 —
The next theorem shows that if the length of each epoch
is set properly, then the regret of the EStochAd algorithm is

bounded byO (y/ndlogn) with high probability.

Theorem 6 For anyn > 0, let H be a hypothesis space
with finite VC dimensiod = VC(H) < co. The EStochAd
algorithm described above satisfies

12(]1 1
R, < c34/ndlog % + 04\/n log M (24)
\ o

with probability 1 — o, wherecs = 18 + 10v/2, and¢y =
18(V2 +1).
Proof: The theorem directly follows from Theorem 5 and

from the definition of epochs. Givet, = n;, = 2F the
regret for each epoch can be rewritten as

2k 2k 12
R < c1\/2kdlog% —|—021/?10g—

Let K = [log, n] + 1 be the index of the epoch containing
the stepn andty = min(2%,n + 1). The total regret over
all the K epochs can be bounded as follows

— 1og — (23)

g

Rp=)_ti(h) = inf > £i(h)
t=1 t=1
K—1tky1—1 K—1tky1—1
= G(h) = inf > > 4(h)
k=0 t=tg k=0 t=tg
K—1 ftry1—1 tpp1—1
< < b(h) = inf > &(h)) (15)
k=0 \ t=tj t=t,
K—1 [logy n ]
< Ry, = Ry,
k=0 k=0
en 7\ U=
§(cl\/dlogz+02\/ log — ) Z\/_(16)
en 1 12 2n —1
< dlog — —log— | ——
< (enfaon T +onyfon3) Y55

en 12
<c3 ndlogF + ¢4 nlogﬁ.



with probability 1 — Slog, n. In (15) the regret is upper-

Algorithm 2 The Bandit-EStochAd forecaster

bounded by considering the best hypothesis in each epoch |nput: hypothesis sett

rather than on the whole horizon afsteps. The inner term

in the summation in (16) is the regret for epoktand is
bounded as in (13). Finally, by using a union bound and
settinga = ((|logy n| + 1) the result is obtained from the
definition of the length of each epoch and some algediih.

Itis worth noting that from a computational point of view
the set of hypotheseH, does not need to be regenerated
from scratch at the beginning of each epdclbut it can
be built incrementally as new inputs comes in. As a conse-
qguence, for each hypothesgisalready available at the previ-
ous epoch, its weight;, is initialized according to the cumu-
lative loss up to time. Similarly, new hypotheses can inherit

the weight of hypotheses belonging to the same class before

the refinement. Although no improvement in the bound can
be proved, using the past performance to initialize the iateig
for new hypotheses is likely to have a positive impact in the
performance.

4 Extensions

In this section, we discuss possible extensions of the pro-

posed algorithm to different settings.

4.1 Multi-Label Classification
Although we analyzed the performance of EStochAd in the

case of binary classification, the extension to the case of

multi-label classification is straightforward. In ordemea-
sure the complexity off we refer to the extension to multi-
label classification of the VC dimension proposed by Natara-
jan in [Nat89]2. Let m be the total number of labels and
d = Ndim(H) be the Natarajan dimension of the hypothesis
space. The number of hypothesedip is now bounded by

|H,| < (e’;’gz )%. In Lemma 4, instead of the VC dimension
Ndim(H) may be employed.

Furthermore, the equality in step (9) of the proof of The-
orem 5 becomes a inequality since two hypotheses may hav
the same loss even when their prediction is different (iecas
of wrong prediction). The rest of the proofs remain un-
changed and the next bound on the regret for EStochAd fol-

lows.

Theorem 7 For anyn > 0, letm > 0 be number of la-
bels and’H a hypothesis with finite Natarajan dimension
d = Ndim(H) < infty. The EStochAd algorithm satis-

fies
1
+eqy/nlog 20821 (17
o

with probability1 — «, with universal constants;, c,.

enm?

R, < c3y/ndlog

4.2 Bandit Information

In the protocol in Figure 2 at the end of each episode
the true label chosen by the adversary is explicitly reveeale
to the learner, thus definingfall information classification

2For more details about complexity measures forvalues
functions, refer to [BDCBHL95].

Initialize : EStochAd )

fort=1,2,...do
Observer;
Sampleh; according to EStochAd (Algorithm 1)
Sampley; ~ qt, where

¢ = (1—7)H{j:hi(art)}+%, jefl,...,m)

Receive los€ ()
Definel,(h;) = %H{hi(%) = Ut}
Yt

Update EStochAd weights with logs(h;)
end for

problem. However, in many applications (e.g., web adver-
tisement systems) only the loss corresponding to the chosen
hypothesisljanditfeedback) is available to the learner.

The EStochAd algorithm can be extended to solve the
hybrid stochastic-adversarial classification problenm#n-
dit information simply by substituting the EWF with a ban-
dit algorithm such as Exp4 [ACBFS03]. Let us consider the
more general case illustrated in Figure 1 in which instead
of selecting a label, at each rounthe adversary chooses a
bounded loss functiofi : ) — [0,1]. At the end of each
round, the learner incurs a loggh(z;)) which is the only
information revealed to the learner. In Theorem 5 the first
part of the regret of EStochAd can be immediately derived
from the bandit algorithm working on the séf,. For in-
stance, for Exp4 withV experts andn labels it is possible
to prove the high-probability regret bound

R, (Expd) < 4, /nmlog% +8log o,

with probability 1 — 3. As discussed in the previous sec-
ion, in case ofm labels the number of experts at time

is bounded byN = |H,| < (<222}  Besides, the sec-
ond term in (6) is not affected by the different feedback in
full and bandit settings and remains unchanged. The only
difference is that the equality in step (9) of Theorem 5 be-
comes an inequality. Indeed, when two hypotheses have the
same prediction their loss is the same. On the other hand,
if the predictions are different, the difference betweea th
losses cannot be greater than 1. Thigh) — ¢,(h') <
I{h(z:) # 1/ (x¢)}. As aresult, the leading term in the cu-
mulative regret is due to Exp4 and we can prove the follow-
ing regret bound for Bandit-EStochAd (Algorithm 2).

nN

Theorem 8 Foranyn > 0, letm > 0 be the number of arms
(i.e., labels) andH a hypothesis set with finite Natarajan
dimensiord = Ndim(H) < infty. The Bandit-EStochAd
algorithm satisfies

2

) ,  (18)

2
R, <O <1/nmdlog MY 1 dlog
(6%

with probability1 — a.

nm

«



1: fort=1,2,...do
2. Simultaneously,
- A stochastic input; is sampled fromP
- PlayerA selects strategy 4
- PlayerB selects strategh s+
3:  PlayerA (resp., B) plays actionja: = ha(wt)
(resp.,ys,t = hpt(xt))
4:  Return feedback
-0a(Yat,YB,t,xe) andlp(ya,e, ys.e, x¢) (banditin-
formation)
-or £a(-,yB,t,xt) andlp(Ya,t, -, x¢) (full informa-
tion)
5.  Player A (resp., B) incurs a 10ssla(ya,t, UB,t, Tt)
(resp..l5(Ja,t, Us,ts 1))
6: end for

Figure 4: The two-player strategic repeated game with
stochastic side information.

4.3 Application in Games

following, we assumé{ to be a compact metric space, a suf-
ficient condition forD(H) to be compact (see e.g., [SLO7]).
Under this assumption, the minimax theorem [CBLO6] holds

|4

sup inf  la(oa,0B)

opED(H)TA €D(H)

inf sup  la(oa,0B), (19)

0A€D(H) 6 5eD(H)
whereV is the value of the game. The following theorem
proves that if both players run either EStochAd or Bandit-
EStochAd (in full information and bandit information re-
spectively), then their performance converges to the value
of the game and the empirical frequencies of their strategie
converge to the set of Nash equilibria.

Theorem 9 Let losse¥ 4, /5 be bounded if0, 1], H be a
compact metric set. If both players run (Bandit-)EStochAd i
a zero-sum game with stochastic side information as defined
above, then
R
HILTI;O ﬁ ZgA(hA,t(xt)v hB,t(xt)vxt) =V
t=1

(20)

Inthis section, we consider an extension of the stochastic-almost surely.

adversarial prediction problem to a two-player strategic r
peated game with stochastic side information. Like in the

Proof: The proof is similar to the convergence proof for

general problem illustrated in Figure 1, the game could be Hannan consistent strategies in zero-sum games [CBLO06].

eitherfull or banditinformation, depending on whether at

the end of each round the learners receive the loss function

a(-, Y, xe) (respLp(Ya,, -, x,)) or only the loss they in-

curred. Our main contribution here is to show that in the case
of a zero-sum game, if both players play according to the

(Bandit-)EStochAd algorithm, then the empirical frequen-
cies of the strategies converge to the set of Nash equilibria

For sake of simplicity we consider the same set of strate-

gies for both players. Lett and B be two players an@{ be

the set of strategiels mapping an input: € X to an action
in)Y = {1,...,m}. The repeated game between player
andB is sketched in Figure 4. At each routican inputz;, is
drawn fromP and, simultaneously, the players select strate-
giesha; € Handhp, € H. As aresult, they incur losses
Ca(ha(xe), hpi(xe), x) andlp(ha(z), hp(ze), 2¢) re-
spectively {4 ,(ha,.) andlp ,(hp ) for shortin the follow-
ing). We define the expected loss for playkewith respect

to the input distribution” as

ZA(hA, hB) = Em~P [ZA(hA(x), hB(x),x)] .

Let D('H) be the set of distributions on the set of pure strate-
giesH. Given mixed strategies, andop in D(H) we de-
fine its corresponding expected loss (similarly for plaggr

la(0a,08) =Epinoahp~on [Lalha, hp)].
We say that a pair of strategiés?, o3;) is a Nash equilib-
rium if
la(oh, o) la(oa,0%), Yoa € D(H)
lp(ai,op) lp(a%,oB), Yop € D(H).
Now we consider the problem of approximating a Nash
equilibrium in the zero-sum case (i.é4(-,-) = —{5(-,)).

In order to define the value of the game and apply the mini-
max theorem we neeR(H) to be compact [CBLO6]. In the

<
<

We first prove the following

1 n
lim — Y las(has) < V.
n—oo N
t=1
We note that the regret for both players can be bounded

exactly asin (18). In fact, lossés and/p are a special case
of the adversarial loss function considered in SectionAs2.
a result, we have

1 n
-~ ZZA,t(hA,t)
=1

with probability1 — o, wherela ¢ (ha) = La(ha, hp.i, 1)
Let Zi(ha) = €ai(ha) — La(ha,hp,). By definition of
the expected loss and by noticing that the hypothksis
selected by the algorithm at timedoes not depend on the
inputz,, we have tha¥, is a martingale

Ey,~p [Zt(ha)|Fi-1] = 0,

whereF;_; is theo-algebra generated by all random vari-
ables up to time — 1 (i.e., past inputs and hypotheses for
both playersA and B). Thus, Zy,---, Z, is a martingale
difference sequence and we may apply Hoeffding Azuma’s
inequality (see e.g., [DGL97]) and obtain

1 « 2
=3 Zi(ha) < /= log B,
nt:l n

with probability1 — 3 for a fixed hypothesié 4. Since the
VC dimension ofH is finite, a functional concentration in-
equality for martingales implies thafn >}, Z,(ha) con-
centrates around uniformly for h4 € H. As a result, we
have

(21)

—infl

lim sup ,inf
YA

n— oo

> lai(ha)| <0, (22)
t=1

—infl

lim sup it~
A

n— oo

ZZA(hA’ hst)| <O0.
t=1
(23)

1 n
inf — Las(h
hi;neﬁn; a(ha)



Now, since the mapping +— ZA(UA,th) is linear,

we discuss similarities and differences between EStochAd

this function admits a pure strategy as minimum, and we and other existing algorithms for online prediction. In Ta-

have
inf En lalha,hpy)= inf En laloa,hpt)
i Z i Z o
h4€){nt 1 ’ .’t (74€D(71)nt 1 ’ .’t

= inf
cA€D(H
whereo% (h) € D(H) is defined for anyy € H aso'’; (h)
1/nY"7  I{hp, = h}. Finally, we have

la(oa,0B), (24)

)ZA(UAvo”é)

inf

sup inf
oA GD(H)

la(oa,0p) <
( 2 opED(H) TAED(H)

Putting together (22), (23), and (24) we obtain (21). The
same result can be obtained fys. From the assumption
la(-,) = —Lp(-,-), minimax theorem (19), and since this
result holds for anyy, then we have (20) with probability 1.
|

ble 5, we summarize the main approaches to the classifica-
tion problem in both stochastic and adversarial settings. U
fortunately not all the bounds are immediately comparable.
Some of the regret bounds are in expectation (with respect
to either the distributior or the randomized algorithd),
while others are high-probability bounds. Perceptrongrerf
mance is stated in terms of mistake bound.

Itis interesting to notice that EStochAd incurs exactly the
same regret rate as an empirical risk minimization algorith
run online in the fully stochastic caseThis means that un-
der the assumption that inputs are i.i.d. from a fixed distrib
tion P, the adversarial output does not cause any worsening
in the performance with respect to a stochastic output. This
result can be explained by the definition of the VC dimen-
sion itself. In fact, while VC definition requires samples to
be generated from a distribution, no assumption is made on
the way outputs are generated and any possible sequences of
labels is considered. Therefore, it is not surprising th&t V

From the previous theorem and the compactness prop-can he used as a complexity measure for both the case of

erty of D(H) it also follows that the empirical frequencies
of the mixed strategies’; and o converge to the set of
Nash strategies. Finally, it is interesting to notice thwed t

convergence rate to the set of Nash equilibria is of the or-

der O(y/d/nlog (nm?)) in the full information case, and
O(+/(md)/nlog (nm2)) in the bandit information case.

5 Related Works

To the best of our knowledge this is the first work consid-
ering the hybrid stochastic-adversarial online learnirabp
lem. A similar setting is analyzed in [Rya06] for batch su-
pervised learning where the sequence of labels is advaksari
and inputs areonditionallyindependent and identically dis-
tributed (i.e., inputs are drawn from distributions cormatied

stochastic and adversarial classification. However, tioasi
tion is significantly different in the case of a fully advenigha
setting where also inputs can be arbitrarily chosen by an ad-
versary.

Both EStochAd and the Agnostic Online Learning (AOL)
algorithm proposed in [SS08] consider the problem of binary
classification with adversarial outputs, an infinite numdser
hypotheses (experts), and they both build on the exponen-
tially weighted forecaster [CBLO6]. On the other hand, the
main difference is that while with adversarial inputs it &ca
essary to consider the Littlestone dimensiofdL it88], the
stochastic assumption on the inputs allows EStochAd to re-
fer to the VC dimension which is a more natural measure of
complexity of the hypothesis space. Moreover, the depen-
dency of the two algorithms on the hypothesis space com-

to labels). In particular, they show that in such a scenario plexity is different (see Table 5). While AOL has a linear

many learning bounds (derived in the pure stochastic ggttin

remain unchanged. The main difference with the setting il-
lustrated in this paper is that we considered the problem of

online learning instead of batch learning and inputs ase i.i
and not conditioned to labels.

The possibility to convert batch algorithms for the fully
stochastic into learning algorithm for the transductivéran
learning scenario is studied in [KKO5]. In transductive on-

line learning the samples are adversarialy generated and al
the inputs are known to the learner beforehand. In this sce-

nario, they prove that a batch algorithm can be efficiently
translated into an online algorithm with a mistake bound
of the orderm?/*\/dlogn with d the VC dimension of the
hypothesis set. The transductive setting is very similainéo
preliminary scenario we described in Section 3.2 in which

we assume the sequence of inputs to be known in advance t
the learner. In the rest of the paper we showed that in orde

to move from a transductive setting to a fully online problem

be drawn independently from some fixed distribution even if
this distribution is not known.

A direct comparison with other algorithms for either fully
adversarial or fully stochastic settings is difficult besau
of the different assumptions. Nonetheless, in the follgwin

dependency oidim(H), in EStochAd the regret grows as
\/VC(H). Furthermore, as proved in [Lit88], for any hypo-
thesis spacét, VC(H) < Ldim(H). In the following we
discuss an example showing how in some cases the differ-
ence between VC and Littlestone dimension may be arbitrar-
ily large. Let consider a binary classification problem with
X = [0, 1] and a hypothesis spagécontaining functions of

the form

1 ifz>9
ho(2) _{ 0 otherwise,

with ¢ € [0, 1].

In the fully adversarial case the regret of AOL is linear in
the time horizon (i.e., in the worst case it can make a mistake
at each time step). In fact, it can be shown that the Little-

Stone dimension of{ is infinite. According to [Lit88], the
lLittlestone dimension is the largest number of mistakes any

learning algorithm could incur for any possible sequence of

cbredictions in the realizable case when the adversary is al-

lowed to choose the true label after observing the learner’s
prediction. Thus, the adversary selects inputs and lalels s

%The online bound is obtained by summing:osteps the usual
offline VC bounds [BBL04].



Algorithm Setting] Hyp. space | Bound | Performance |
Empirical Risk Minimization [BBL04]| S/S VC(H) < oo HP-Regret | Eq, )~p [Rn] < /nVC(H)logn + y/nlog 3!
Exp. Weighted Forecaster [CBL06] | A/A |H| = N < oo | HP-Regret | R, < \/nlog N + /nlog 31

Perceptron [Ros58] A/A Linear Mistake M, <L+D++LD

Agnostic Online Learning [SS08] A/A Ldim(H) < co | Exp-Regret| E4 [R,] < Ldim(H) + y/nLdim(H)logn
Transductive Online Learning [KKO05]| Transd} VC(H) < co Mistake M, < L+n%*\/VC(H)logn

EStochAd [This pape} SIA VCO(H) < oo HP-Regret | R, < /nVC(H)logn + y/nlog 31

Table 1: Performance of algorithms for different classtfma scenarios. All the bounds are reported up to constambifa

In the setting column, the two letters specify how inputs &atikls are generated, whefestands foradversarialand S
for stochastic In the bound columidP stands for high-probability bound aritkp stands for bound in expectation. In the
parceptron bound/,, is the number of mistakes aftersteps,L and D are the cumulative loss and the complexity of any
weight matrix.

he,
-------------- G--x X X
H v = 1/2
y1= y1=0
i Vo = 1/ V3 = 3/4
e S T I ERTRY - PTPR PP ERRTIPRSPEPISPRPIRRRRES
0 Ty Ty L v=1/8 v5=3/8 wv=5/8 v =71/8

Figure 5: Example of a sequence of inputs and labels such
that the adversary can force any learning algorithm to in-
cur a mistake at each round. Circles represent the labels
predicted by the learner and crosses the labels revealed
by the adversaryh,, (in dotted-line) is an example of

a hypothesis which perfectly classifies all the samples
shown so far.

Figure 6: The mistake-tree is defined for any possible
sequence of predictions. Double lines correspond to the
example depicted in Figure 5.

as to force the learner to make as many mistakes as possianteeing that it is always possible to find a hypothesi&in

ble given the condition that there exists a hypothasigm H that would make no mistakes (see Figure 5 for the sequence
such thath*(x;) = y;, Vt < n. In order to determine the  of inputszy, zo, 23, 24). As a result,Ldim(H) = oo and
Littlestone dimension o we sketch how to build a shat- the AOL has a linear regret. On the other hand, when inputs
tered mistake-tree of depth for anyn > 0 (see Figure 6).  cannot be arbitrarily chosen by an adversary but are sampled
Nodes of the mistake-tree represent the inputs revealed byfrom a fixed distribution EStochAd can achieve a sub-linear
the adversary depending on the sequence of learner’s predicregret. In fact,;H could shatter at most one points, the VC
tions. Letv; = % be the root of the mistake-tree, that is the dimension ofH{ is 1, thus leading a regret for EStochAd of
first inputz, revealed to the algorithm. Next, we label nodes orderO(y/nlogn).

vy andws as the middle points of interval8, v1] and[vy, 1] Therefore, even in very simple problems the possibility
respectively. The second input shown to the learner dependdor the adversary to select the inputs may lead to an arbitrar
on the prediction at time = 1. If the prediction isy; = 14, ily bad performance, while drawing inputs from a distribu-

then the adversary selects a lapel= 0 and the next input  tion allows the learner to achieve a sub-linear regret efven i
point is set tar, = vy. If the algorithm predictg, = 0 in outputs are adversarial.

x4, itis still possible to force the algorithm to incur a mistak _
by settingy, = 1 without violating the realizability condi- 6 Conclusions
tion. In fact, any hypothesis with, < ¢ < z; perfectly

classifies bothy; andy,. The next inputz; is the middle In this paper we introduced the hybrid stochastic-adveisar

point of intervalzs, 1] and the algorithm is forced to make online prediction problem in which inputs are independentl

another mistake. The same process can be repeated at ea@pd identically generat_ed and labels are arbitrarily_ chbse
round by choosing the next input to be the middle point of " ac_i\_/ersary. We deylsed an ep(_)ch-.basegl algon_thm for the
either the left or the right interval depending on the presio  SPECIfic problem of binary classification with full informa-
prediction and by revealing a label which is exactly the op- ion and analyzed its regret. In particular, we noticed that
posite of the one predicted by the learner. At each step theWhile the StOChaS.t'C assumption on inputs allows to use the
adversary can force the learner to make a mistake while guar-Vell-known VC dimension as a measure of complexity for
the hypothesis space, adversarial labels do not cause any

“The casegj, = 0 is symmetric. worsening in the performance with respect to fully stochas-



tic algorithms. We believe that this analysis, togethehwit

its relationship with the results for the fully adversadake,

sheds light on the similarities and differences betweeatbat [LZ07]
stochastic learning and adversarial online learning atbeg

line of [KKO5]. Finally, we discussed extensions to multi-

label classification, learning from experts and bandits set

tings with stochastic side information, and approximatbn  [Nat89]
Nash equilibria in games.

[Ros58]
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