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Abstract

To support emerging database applications,
object-relational databases leverage the ma-
ture relational database technology and al-
low wusers to introduce application-specific
types and methods. Tables in a database
may now contain such objects as geographi-
cal shapes, images, and text documents. To
realize the full potential of object-relational
databases, efficient querying and searching of
user-defined objects must be supported. This
paper presents a high level framework for in-
dexing of user-defined types with user-defined
predicates. It is orthogonal to the low level ac-
cess methods that are supported. It is unique
in providing direct user control over the trans-
formation from a user-defined type into an ab-
stract domain of index key values, the genera-
tion of search keys of a user-defined predicate
with bound search arguments, and the execu-
tion of a user-defined predicate. The high level
framework has been implemented in IBM DB2
Universal Database. Its generality, usability,
and performance have been demonstrated in
different application domains, where indices
on user-defined objects can be fully integrated
with SQL queries and exploited by the query
compiler.
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1 Introduction

Emerging database applications require scalable man-
agement of large quantities of complex data together
with traditional business data and flexible querying
capabilities for business intelligence. Such applica-
tions are called universal applications [25]. Object-
relational databases have been developed to sup-
port universal applications. They leverage the ma-
ture relational database technology, which provides
scalability, reliability, and recovery. More impor-
tantly object-relational databases enable users to in-
troduce application-specific types and methods into
a database. Tables in a database may now contain
such user-defined objects as geographical shapes, im-
ages and semi-structured text documents.

The business value of complex data cannot be fully
realized unless efficient search and querying can be
provided on user-defined objects together with the tra-
ditional business data. Unfortunately existing com-
mercial databases are rather primitive in their support
for access and indexing of user-defined objects. B-trees
[3, 9] often serve as the sole indexed access method
(although Informix [18] does provide a second indexed
access method in the form of R-trees [15]). Indexing is
also limited in that that an index can be created only
on table columns whose data types are understood by
the access methods and that an indexed scan of a table
can exploit only those predicates that are understood
by the access methods. For example, when B-tree is
the sole indexed access method, only columns of built-
in types can be indexed and only relational operators
can be exploited during an indexed scan of a table.
Several different approaches have been investigated to
provide extensibility in access and indexing.

One approach is to support extensible indexing
through query rewriting. Normally a separate entity
manages the special access methods and indexing on
complex data which the database engine 1s unaware of.
A user query involving predicates on complex data is
transformed into a different query by taking into con-
sideration the access methods and indexing specific to
complex data. The indices may be stored in a rela-
tional database or in external files. For example, in a



typical geographical information system (GIS) such as
ESRI’s SDE [10] a spatial data engine supplies a set of
proprietary spatial functions and predicates and uses
a relational database to store both user tables and s:de
tables representing the spatial indices. Spatial predi-
cates in a user query are converted by the spatial data
engine into joins with and predicates on the side ta-
bles. The resulting query is then given to the relational
database for optimization and execution.

The query rewriting approach does not require
modifications to the database engine, which is nor-
mally not an option for application developers. When
the underlying database does not support indexing on
complex data, the query rewriting approach offers an
excellent solution to build advanced spatial applica-
tions with good performance. However, a tighter in-
tegration of spatial indexing with the database engine
can provide even better performance. This calls for
enhancing the database engine with extensible access
and indexing of complex data.

A better approach to extensible access and index-
ing is through user-defined access methods and user-
defined indexing that are tightly integrated with the
database engine. Stonebraker [24, 25] introduced user-
defined access methods by describing an interface for
implementing a new access method. Users specify
functions for opening a scan of an index, getting the
next record in a scan, inserting a record, deleting a
record, replacing a record and closing a scan. These
functions are called by the database engine at appro-
priate places when executing a query plan.

User-defined access methods have the performance
advantage due to the tight integration of access meth-
ods with the database engine. However, experiences
have shown that it is extremely difficult for applica-
tion developers to define a new access method. The
reason is that a new access method has to interface
with several low level components of a database en-
gine, including lock manager for locking on index ob-
jects, log manager for recovery, and buffer manager
for page management. Few people possess such an in-
timate knowledge of the internals of a database engine,
other than the database developers themselves, to be
able to write an access method effectively. Extensive
changes to low level components of a database engine
are always a risky proposition that is not taken lightly
in the context of real world applications of a mature
database product.

Researchers have extended the concept of “search”
in a user-defined access method in the form of gener-
alized search trees [16]. The notion of a search key is
generalized to a user-defined predicate that holds for
every datum below the key in a search tree. Users
define six key methods that are invoked during the
top-down search and insertion/deletion of generalized
search trees. This has been further extended in [1] to
allow more powerful searches such as nearest-neighbor

555

and ranked search.

Indexing aims to provide efficient search and query-
ing of data using some underlying indexed access
method. The purpose of user-defined indexing is to ex-
tend indexing capabilities to data types and predicates
that may not be directly supported by the underlying
indexed access methods. In [24], Stonebraker intro-
duced a mechanism (called eztended secondary indices
in [20]) that allows users to apply existing access meth-
ods such as B-trees to new data types. In the case of
B-trees, an operator class can be defined that provides
a list of user-defined operators and specifies the corre-
spondence between the user-defined operators and the
standard relational operators for B-trees. Users can
specify an operator class when creating an index on a
table column of a new data type.

The mechanism of extended secondary indices in
[24] is generalized in [20] so that predicates that can-
not be mapped neatly to comparison operators can
also be used for indexed scan of a table. For instance,
one may want to index on keywords occurring in titles
of books. Their idea is to introduce another operator
that is applied to values of a column to generate index
key values, e.g., an operator that returns a list of key-
words occurring in a given string. The result of the
operator can be a list of values that can be compared.
The introduction of this operator essentially provides
a logical separation between values of a table column
to be indexed, e.g. the title of a book in a table books,
and the corresponding index keys, e.g., keywords oc-
curring in the title of a book.

This paper focuses on user-defined indexing and
presents a high level framework of indexing for user-
defined types. It generalizes extended secondary in-
dices in [24, 20] in two aspects. First, we provide user
control over “search” in indexing that maps a predicate
with search argument into search ranges used by an
underlying access method for indexed scan of a table.
Such mapping is no longer limited to a single search
range based upon a relational operator. For a user-
defined predicate, users can provide their own method
of generating possibly multiple search ranges based
upon the search arguments of the predicate. Second,
we provide user control over the execution of possibly
expensive user-defined predicates using a multi-stage
procedure.

As a generalization of extended secondary indices in
[24, 20], our framework allows users to concentrate on
the semantics of applications and user-defined predi-
cates without being concerned with low level details
of locking, recovery, buffer management or balanced
search tree updates. It is tightly integrated with the
database engine. It enhances the value of the un-
derlying access methods, built-in or user-defined, in a
database system by supporting indexing on new data
types and indexed scans using new predicates. The
multi-stage evaluation of expensive predicates provides



an implementation framework for filtering with ap-
proximate predicates [23].

The proposed framework has been implemented in
IBM DB2 Universal Database. Its generality, ease-
of-use and performance advantage have been demon-
strated in several different domains of applications
including, among others, spatial databases [26] and
indexing [8] on structured XML (Extensible Markup
Language) documents [27].

The rest of this paper is organized as follows. Sec-
tion 2 revisits the implicit assumptions that are “hard-
wired” in existing database systems that make them
inadequate for indexing on user-defined objects. Sec-
tion 3 presents our high level framework for direct user
control over indexing of user-defined types. Section 4
demonstrates its application in two different domains.
Section 5 concludes the paper.

2 “Hard-Wired” Indexing

B-trees are arguably the most popular indexed ac-
cess method in relational databases [3, 9]. Existing
database systems are heavily “hard-wired” to support
only B-tree indexing on primitive data with relational
operators. This section reviews the implicit assump-
tions that have been made and examines the conse-
quent limitations for indexing of user-defined types.

With B-trees often as the built-in indexed access
method, most database systems support primitive in-
dexing that is limited by the B-tree indexed access
method. Indices are defined by specifying the table
name, the set of index columns, the sort order, and
the unique constraint of an index, e.g.,

CREATE TABLE employee(empno Char(6),
name Char(20),
title Char(20),
salary Integer);
CREATE INDEX salary_index on employee(salary ASC);

When a tuple is inserted into a table, the values of
all index columns are concatenated to form the index
key that is used to traverse the B-tree for the inser-
tion of the new index entry. Similarly when a tuple
is deleted, the index key is used to identify the index
entry for deletion.

Once an index is created for a table, subsequent
queries can take advantage of the indexed access path
provided by the index:

SELECT name, salary
FROM employee
WHERE salary > 50000;

Existing database systems make several implicit as-
sumptions in their indexing support due to the use of
B-trees as the built-in indexed access method. First,
an index is created on the values of table columns di-
rectly. The index key is the concatenation of the values
of the index columns. Clearly this is not acceptable for
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user-defined objects, which can be large binary objects
or text documents that are not appropriate as index
key values. Even if all the index columns have built-in
types, users may want to create an index on some val-
ues derived from the values of the index columns, e.g.,
compensation level based upon the salary or keywords
in the title of a book [20].

Second, a total order is assumed over the domain of
index key values. An indexing search is restricted by
a single range of index key values. For example, the
predicate salary > 50000 maps trivially to the range
(50000, c0). This is not sufficient for a user-defined
predicate that may bound a search in more than one
dimension, e.g., within a certain distance from a spe-
cific location.

Third, for index exploitation, which exploits any
available indices for efficient query execution, only sim-
ple predicates of relational operators are considered by
query optimizers. In a spatial database, a predicate
such as distance(location, point(10,10)) < 5 may limit
the search space of location within the circle centered
at (10, 10) and with radius 5. Query compilers need to
be able to recognize user-defined predicates and know
how to derive the corresponding search space in order
to exploit any index of user-defined types for efficient
query execution.

3 High Level Indexing of User-Defined
Types

Our framework of high level indexing of user-defined
types sits on top of the underlying access methods
in a database system. It provides direct user con-
trol over index maintenance, search key generation for
user-defined predicates and efficient predicate execu-
tion through filtering. This section describes the main
components of the framework and its implementation
in IBM DB2.

3.1 Index Maintenance

Index maintenance deals with the update of an index
when tuples are inserted, deleted, or updated in a ta-
ble. Existing database systems often treat the value
of an index column directly as its index key, i.e., the
mapping from values of an index column to index keys
is the trivial identity mapping. To untie index keys
from the values of an index column, we allow a user-
defined key transform. Given the value of an index
column, the key transform returns one or more index
key values. Therefore a key transform is in general a
table function that returns a table as its result. Each
row in the result table forms an index key.

The introduction of key transforms brings several
fundamental benefits. First of all, the domain of index
keys 1s logically separated from the domain of values
for an index column. Since an index column can be of
any user-defined type, its values may be large objects



(LOBs) or structurally rich text documents, among
other things. It is impossible to store them directly in
an index. Nevertheless, an index can still be created on
them using index keys derived by the key transform.

Second, even if the values of an index column are
all of built-in types, using index keys derived by a key
transform can have some nice properties that are not
satisfied by indexing on the index column values di-
rectly. For example, a high dimensional space can be
mapped to a linear ordered space such that multidi-
mensional clustering is preserved and reflected in the
one-dimensional clustering [2, 19]. Distance preserving
transformations have been successfully used to index
high dimensional data in many applications, such as
time sequences [12] and images [11]. In [4], a new
indexing method was proposed for high dimensional
data spaces that can be implemented through a map-
ping to a one dimensional space. Key transforms allow
the implementation of these new indexing methods on
top of existing access methods such as B-trees.

Third, from an abstract interpretation point of
view, index keys can be viewed as abstractions of the
corresponding values of index columns and are simpler
and/or occupy less space [8]. For spatial applications,
index keys often represent approximations of spatial
objects, such as z-values in [21] or minimum bounding
boxes (MBRs) in R-trees [15]. Depending upon the
abstraction defined by the key transform, the more in-
formation that is stored in an index, the more filtering
that can be done by indexed search, thus offering a
tradeoff between indexing cost and search efficiency.

Fourth, a single value of an index column can be
mapped to a number of index keys using a table func-
tion as a key transform. The relationship between val-
ues of an index column and index keys is no longer
one-to-one, but many-to-many, e.g., z-transform [21]
and keywords in a book title [20]. Different values of
an index column can have the same index key, and one
value of an index column can have multiple index keys
associated with it.

The idea of key transforms has been explored in
[20] for keyword searching in textual databases. We
are using the same idea as one of the building blocks
for our framework of high level indexing of user-defined

types.

3.2 User-Defined Predicates

Existing database systems support simple predicates
of relational operators for which the corresponding
search ranges can be easily determined based on the
operators and the bound arguments. To provide ex-
tensible indexing over user-defined objects, two issues
have to be tackled. First, a user-defined type may or
may not support the standard relational comparisons.
Even if it does, these relationships may not translate
directly to search ranges over index keys. In addi-
tion, users may want to search based upon application-
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specific predicates other than relational comparisons,
such as overlap and within in spatial databases.

Second, a predicate or condition defined by a user
can be an arbitrary condition representing some com-
plicated relationship among different objects. When
such a user-defined predicate is used to exploit any
existing index for efficient query execution, the rich
semantics of user-defined predicates requires sophisti-
cated computation of the corresponding search ranges
to be used for the indexed scan of table. This is an
efficiency issue as the complete range of index keys is
always a logical candidate for search.

Example 3.1 Consider the following example:

CREATE TABLE customer(name varchar(20),
id integer, ...,
xyloc location);

CREATE INDEX locationIdx on customer(xyloc);

SELECT * FROM customer
WHERE within(xyloc, circle(...));

The search region is the minimal rectangular box
(called minimal bound box), containing the circle in
the WHERE clause. To capture the search region accu-
rately, one might use two B-tree indexes, one on the
X coordinate and the other on the Y coordinate of a
location, for executing the query. We believe that an
extensible mechanism is needed to provide user con-
trol over how the search region is determined given an
arbitrary search condition.

O

For extensible indexing with user-defined predi-
cates, we want to represent the corresponding search
region as closely as possible and introduce the con-
cept of search methods. Each search method is a user-
defined function that given a semantic relation over
user-defined objects and one of its search patterns, re-
turns a set of search keys.

A search method computes the set of search keys
over which the possible search targets can be found.
For the query in Example 3.1, a search method can
be defined for the semantic relationship within where
the first operand is the search target and the second
operand is the search argument. Assuming that an
index key is a fixed size grid cell intersecting with an
object, the search method can return the minimal set
of grid cells that covers the circle given in the search
argument.

A search method in general is only an approxima-
tion for the semantic relation r in the sense that ev-
ery search target participating in the relation r with
search arguments must have an index key among those
returned by the search method. For instance, every
geometric object that is within the circle given in the
search argument must have a grid cell that is in the
set of search keys generated by the search method.



However, a search method may not be accurate in
the sense that some objects with an index key among
those returned by the search method may not satisfy
r with the search arguments. In other words, it may
produce false hits. Therefore it is necessary in general
to evaluate r for every object that is found using the
index keys from a search method.

3.3 Index Exploitation

Index exploitation is performed by query optimizers
in order to utilize any index for efficient query execu-
tion. Traditionally query optimizers have been able
to exploit only simple relational operators for index-
ing since the corresponding search range can be easily
determined. For index exploitation with user-defined
predicates, the query compiler must be able to recog-
nize them and find the relevant search methods to use.
The definition of a user-defined function is extended to
specify whether 1t can be used as a predicate and if so,
what search method to use when certain operands are
search arguments. (See Section 3.4 for details of the
syntax of predicate specifications.)

For the query in Example 3.1, suppose that within
has been defined as a predicate that has an associated
search method when the second operand is a search
argument. The query compiler can choose an index
scan over a table scan to retrieve records from table
customer for two reasons. One is that there is an index
on xyloc attribute. The other is that the query com-
piler recognizes that the second operand of within is
bound and within is a predicate with a search method
when the second operand is a search argument. The
index scan will use the corresponding search method
to generate a set of search keys, which represents the
minimal set of grid cells covering the circle in the sec-
ond operand. The set of search keys will be used by
the underlying access method to retrieve the relevant
records from table customer.

3.4 Implementation and Predicate Filtering

The high level framework of indexing of user-defined
types has been implemented in IBM DB2. Besides
index maintenance, user-defined predicates and in-
dex exploitation, the implementation also provides
user control over multistage evaluation of user-defined
predicates through filtering. This avoids the poten-
tially expensive evaluation of user-defined predicates
and reduces both I/O and CPU costs.

Figure 1 shows the syntax for index extensions with
the associated key transform and search methods. The
semantic relation corresponding to a search method is
not explicitly specified. The CREATE INDEX EXTEN-
SION statement defines a parametric index extension.
A parametric index extension is instantiated when an
index is created on a table using CREATE INDEX state-
ments. The parameters of an index extension can be
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used to specify, for example, the number of layers and
the size of a grid cell in a multi-layer grid index.

The key aspects of an index extension include the
key transform function (indicated by <key transform
invocation>) and the associated search methods. Each
search method contains a search key producer function
(indicated by <search key producer>) that computes
the set of search keys given search arguments and an
index filter function (indicated by <indez filter>) used
inside the index component.

The user control over the index filter is a power-
ful concept. It provides early filtering using the index
keys. This avoids the /O cost of retrieving data that
obviously do not satisfy the search criteria since data
will not be retrieved from the disk using an index scan
until the index keys are determined. This also makes 1t
possible for users to combine multiple indexing mech-
anisms in a single search by plugging an index filter
that performs additional search, e.g., using an exter-
nal search engine.

Figure 2 shows the syntax of user-defined functions
that can serve as predicates. Each predicate specifica-
tion indicates an optional filter function, and the as-
sociated search methods for different search patterns.
The data filter aims to reduce the potentially expen-
sive evaluation of the predicate by filtering out records
that do not satisfy the predicate using simpler and
cheaper operation. In <ezploitation rule>, the pa-
rameters following WHEN KEY indicate the search ar-
gument.

The optional keyword EXACTLY following AS PRED-
ICATE requires a little explanation. When an index
scan using a predicate is executed, the corresponding
search method, which is a user-defined function, is in-
voked. It computes a set of search keys for the search
target using the search arguments. The search keys
are sent to the underlying access methods to retrieve
the relevant records. The index filter associated with
the search method is applied, if there exists one, before
the records are retrieved from the disk. The relational
data manager then applies the data filter associated
with the predicate specification. Finally all records
that pass through the data filter are evaluated using
the predicate.

When the index filter and the data filter provide
only an approximation to the predicate, e.g., in spa-
tial applications, the final step of predicate evaluation
is necessary. However, in other applications such as
document search, the filters may compute exactly the
set of all answers that satisfy the predicate. The final
step of predicate evaluation should not be carried out
in this case. The keyword EXACTLY indicates such a
situation.

Figure 3 shows the architecture of the implementa-
tion in DB2. It can leverage any underlying access
methods that are available. The rectangular boxes
represent places where user-defined functions can be



<create index extension> 1=

CREATE INDEX EXTENSION <header> <indexr maintenance> <indexr search>
<header> 1= <indexEstensionName> ( { <parmName> <parmType> }T )

<inder maintenance> 1=

WITH INDEX KEYS FOR ( { <colName> <colType> }t ) /* index columns */

GENERATED BY <key transform>
<index search> 1=

WITH SEARCH METHODS FOR INDEX KEYS

( { <colName> <colType> }t ) {<search method>}*
< search method> 1=

WHEN < searchmethodName> USING ( { <colName> <colType> }T ) /* search arguments */

RANGE THROUGH < search key producer>
CHECK WITH <index filter>

<create index> 1=

CREATE [UNIQUE] INDEX <indezName> ON <tableName>

( { <colName> [ASC | DESC ] }1)
USING <inderEstensionName> ( { <constant> }1 )

Figure 1: Syntax for index extensions, where N 7T specifies one or more occurrence of N, with the separator ’,

when appropriate.

b

<create function> 1=

CREATE FUNCTION <functionName> { <parmName> | <dataType> }+

<predicate specification>T
<predicate specification> 1=

AS PREDICATE [EXACTLY]

[ FILTER BY <data filter> ]

[ <indez ezploitation> ]
<index exploitation> 1=

SEARCH BY INDEX EXTENSION <indexExtensionName> <exploitation rule>*

<exploitation rule> 1=

WHEN KEY ( { <paramName> }T ) /* search target */

USE < searchmethodName> ( { <paramName> }+ )

Figure 2: Syntax for user-defined predicates and their associated search methods

plugged in to support user-defined search.

The key transform is invoked in the index man-
ager for index maintenance, when tuples are in-
serted/deleted /updates in a table. The query compiler
utilizes specifications of user-defined predicates for in-
dex exploitation. During a search based upon a user-
defined predicate, the corresponding search method is
invoked by the relational data manager to generate a
set of search keys.

For retrieval based upon a user-defined predicate,
two filters are included in the architecture. The pur-
pose is to avoid potentially expensive evaluation of
user-defined predicates. Users can specify simpler and
cheaper functions to be applied as filters before pred-
icate evaluation. The index filter filters out records
before they are retrieved from the disk into buffers
inside the relational data manager. The data filter in
the relational data manager presents another chance of
cost efficient filtering before expensive predicates are
evaluated.

4 Indexing for GIS Applications

In traditional geographical information systems
(GISs), indexing on spatial data is provided through
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a set of proprietary APIs. When a query involves
searching on spatial data, the spatial predicates are
transformed for index exploitation, and the resulting
query is then sent to the database for optimization and
evaluation. The lack of integration of spatial indexing
with the database engine leads to integrity issues and
performance hits. Our framework of high level index-
ing makes it possible to have spatial indexing within a
database and still take advantage of the special search
methods that have been developed in GISs.

For example, suppose that the following user-
defined types have been created:

CREATE TYPE envelop
AS (xmin int, ymin int, xmax int, ymax int);

CREATE TYPE shape AS (gtype varchar(20),
mbr envelop,
numpart sint,
numpoint sint,
geometry BLOB(1M))
NOT INSTANTIABLE;

CREATE TYPE point UNDER shape;

CREATE TYPE line UNDER shape;
CREATE TYPE polygon UNDER shape;

where shape serves a supertype for various subtypes



Query | Prediicate Specification

Query Compiler:
Index Exploitation
Insert/Del ete/Update
Relational /
DataMagr: Search Args Predicate Eval
Table Update ‘ Search Methods ‘ ‘ Data Filter ‘
. A
Index Mgr:
Search Keys
Key Transform
Index Update %rch Index Filter
Access Meth})ds / \ Table

_ -

Figure 3: Implementation of high level indexing of user-defined types
such as lines and polygons. Two tables have been xmin int, ymin int, xmax int, ymax int)
defined in the database, one storing the information WHEN search_within USING (area shape)
about schools and the other containing the informa- RANGE THROUGH gridrange( .
) . . i levels, area..mbr..xmin, area..mbr..ymin,
tion on households and their income information. area..mbr..xmax, area..mbr..ymax)
CHECK WITH checkduplicate(

CREATE TABLE schools AS (name varchar(20), level, gx, gy, xmin, ymin, xmax, ymax,
district varchar(20), levels, area..mbr..xmin, area..mbr..ymin,
address varchar(20), area..mbr..xmax, area..mbr..ymax)
area shape WHEN search_contain USING (loc shape)

PRIMARY KEY (name, district)); RANGE THROUGH gridrange (

CREATE TABLE households AS (address varchar(20), levels, loc..mbr..xmin, loc..mbr..ymin,
annualincome int, loc..mbr..xmax, loc..mbr..ymax)
location shape); CHECK WITH mbroverlap(

xmin, ymin, xmax, ymax,
The following query tries to compute the average an- loc..mbr..xmin, loc..mbr..ymin,
nual income of all households inside the attendance loc..mbr..xmax, loc..mbr..ymax);
area of a specific school: The index extension definition specifies the function
. for key transform, gridkeys and two search methods.

SELECT avg(h.annualincome) DB2 the double dot tati f . ¢

FROM houses h, schools s ( ) uses the double dot notation for accessing at-

WHERE s.name = ’Armstrong Elementary’ AND tributes of objects of user-defined types.) One is for

s.district = ’Highland Park’ AND searching within a specific area, and the other is for

within(h.location, s.area); finding shapes that contain a specific location. Both

search methods use the same function, gridrange, to
generate a set of index keys for potential search tar-
gets. Each search method has its own filtering func-
tion. All the functions that are mentioned may be
user-defined functions, whose definitions are omitted
here.

We are now ready to create an index on the
location column of table households:

To allow efficient execution of this query, we need
to (a) create an index extension incorporating user-
defined key transform and search methods for shape;
(b) create an index on table households using the
index extension; and (c) specify predicates for within
and the associated search methods.

The following statement defines an index extension
over type shape. It uses a multilayer grid index for

djapes, CREATE INDEX houselocIDX ON households(location)
USING gridshape(’lO 100 10007);

CREATE INDEX EXTENSION

gridshape(levels varchar(20) FOR BIT DATA) The parameter indicates three levels of different grid
WITH INDEX KEYS for (sh shape) cell sizes.
GENERATED BY gridkeys( ) ) For index exploitation, we need to define predicates
levels, sh..mbr..xmin, sh..mbr..ymin, and their associated search methods. The following
sh..mbr..xmax, sh..mbr..ymax) . . .- L. .
WITH SEARCH METHODS FOR INDEX KEYS specification indicates that within should be viewed
(level int, gx int, gy int, as a predicate.
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CREATE FUNCTION within(sl shape, s2 shape)
RETURNS int

LANGUAGE C ... EXTERNAL NAME ’/1ib/gislib'!within’

AS PREDICATE

FILTER BY mbrwithin(sl..mbr..xmin, sl..mbr..ymin,

sl..mbr..xmax, s1..mbr..ymax,
s2..mbr..xmin, s2. .mbr..ymin,
s2..mbr..xmax, s2..mbr..ymax)

SEARCH BY INDEX EXTENSION gridshape
WHEN KEY (s1) USE search_within(s2)
WHEN KEY (s2) USE search_contain(sl);

The last three lines indicate that searching based upon
predicates of within will be done using an index ex-
tension gridshape. When the first argument s1 is
the search target, use search method search within
with s2 as the search argument. When the second
argument s2 is the search target, use search method
search _contain. The query compiler is able to gener-
ate a plan that takes advantage of the access path pro-
vided by the index on location of table households.
The key transform, search key producer, and filtering
functions will be called automatically at appropriate
places.

5 Performance

Our framework of high level indexing of user-defined
types extends the expressive power and integrated op-
timization of SQL queries to user-defined types. This
section presents some preliminary performance mea-
surements for GIS applications using the existing GIS
architecture and our integrated approach.

The existing GIS architecture is represented by SDE
3.0.2 on DB2 UDB Version 5 from ESRI [10], which
uses a spatial data engine external to the database for
spatial optimization. Given a table with business data
and a column of spatial attributes, SDE introduces a
new feature table to represent spatial data and a new
index to process spatial queries. The feature table con-
tains an id column as the primary key and all the spa-
tial attributes and the geometric shapes. The spatial
column in the original table (called business table) is
replaced by an id column that is a foreign key for the
feature table.

In addition to the feature table, SDE maintains a
spatial index table, which uses a three level grid based
index method in our example. The spatial index table
contains the feature id (which is a foreign key for the
feature table) and the indexing information such as
the location of the lower left grid cell and the feature’s
minimum bounding rectangle (MBR).

When processing a spatial search query, SDE uses
the spatial index table and the feature table to com-
pute a list of (ids of) candidate shapes that satisfy
the spatial predicate. The computed list of candidate
shapes is then used to retrieve data from the busi-
ness table by applying the remaining predicates in the
WHERE clause of the spatial search query. Currently
SDE handles the join between the business table and
the feature table itself by executing different queries.
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Our integrated approach of high level indexing of
user-defined types is implemented in DB2 Spatial Ex-
tender.

We use the census block data for the state of Ken-
tucky, which has 137173 polygons, with an average of
31 points per polygon. The table kentuckyBlocks has
a column boundary of spatial type POLYGON, in addi-
tion to other attributes such as the name and the total
population. Each polygon represents an area, contain-
ing as few as 4 points and as many as 3416 points.

CREATE TABLE kentuckyBlocks
(name varchar(20), ...

, boundary POLYGON)
The following queries represent some typical oper-
ations in GIS applications:

e [oading: including raw data loading through a se-
quence of SQL insert statements and the mainte-
nance of spatial indices;

e region queries: for three predefined regions in dif-
ferent locations, with the sizes of the answer sets

being 3155, 2387 and 1457 respectively;

e point queries: 100 random point searches, simu-
lating users pointing at a polygon during spatial
browsing;

e region queries with attributes: same as region
queries except that non-spatial attributes such as
the name and the total population are also fetched
in addition to the spatial data.

o fetch all: measuring how fast data can be pumped
out of a database.

All queries were run on the IBM RS6000/J40 server
and during off hours to minimize variations due to
other users and processes. The GIS client programs
are run on the same machine as the server. The mea-
surements of query execution time (rounded to sec-
onds) are shown in Table 1. Data loading was run
once while the rest of the queries are run 3 times and
the averages are shown.

In both loading and fetch all, we are processing the
entire table and the integrated approach is about 4
times faster. In the case of loading, an insert state-
ment for a row in the integrated approach becomes
three insert statements in the GIS approach, one for
the business table, one for the feature table, and one
for the spatial index table. In the case of fetch all, since
the GIS approach handles the join between the busi-
ness table and the feature table by itself, it is executing
a separate query against the feature table repeatedly,
once for each set of data retrieved from the business
table.

For region queries without non-spatial attributes,
the integrated approach is about 2.5 times faster than
the GIS approach, but is about 3 times faster for region



queries with non-spatial data. The difference is that
the latter case involves the access of the business table.
The GIS approach performs very well for point queries.

Overall, the results show that our integrated ap-
proach of high level indexing of spatial data has a much
better performance. This shows the value of enhancing
the database engine for extensible indexing of complex
data.

6 Related Work and Conclusion

Universal applications involving both complex queries
and complex data demand strong and flexible index-
ing support on non-traditional data such as geograph-
ical information and structured documents. Indexing
of user-defined types with user-defined predicates is
crucial to meeting the demands of modern database
applications.

Different approaches make different tradeoffs when
it comes to implementing indexing of user-defined
types. The query rewriting approach transforms
queries involving user-defined predicates into joins
with special index tables that the database engine is
not aware of. It does not require modification to the
database engine, but at the same time, the database
engine will not be able to take full advantage of the
special indexing for query optimization.

One can also implement application-specific access
methods. There is no shortage of special access meth-
ods for spatial or multidimensional data [13]. Gen-
eralized search trees have also been developed [1, 16]
for user-defined access methods. They have the ad-
vantage of providing direct support for application-
specific searches. Unfortunately, only B-trees [3, 9]
and R-trees [15] have found their way into commercial
database systems. One of the reasons is that an imple-
mentation of a new access method or a generic search
tree is a huge undertaking since it interacts closely
with low level components of the database engine such
as concurrency control, lock manager and buffer man-
ager. Reliability is of paramount importance for a ma-
ture database product, which often discourages exten-
sive changes to low level components of the database
engine. In addition applications are requiring new
datatypes and more advanced searches like nearest
neighbor for spatial data [22] or regular path expres-
sions for semi-structured data [14]. Tt is expected that
the access methods supported by a database system
will not always match the growing needs of applica-
tions.

Our framework of high level indexing of user-
defined types generalizes extended secondary indices
in [24, 20]. Tt is tightly integrated with the database
engine, especially with the index manager and query
optimizer. It is orthogonal to the underlying access
methods and can take advantage of any special access
methods whenever they are available. OQur main con-
tribution is not in developing a new access method
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or a special search algorithm, but rather in providing
a framework in which users have direct control over
index maintenance, index exploitation, index filtering
and predicate evaluation.

More specifically, users can define their own key
transforms. The idea of key transforms is not new,
e.g., transforming a geometric object into an MBR for
R-trees [15] or into a set of z-values [21]. Following
[24, 20], we give the power to users to decide what ab-
stractions or approximations to use as index keys for
a user-defined type.

Users can define their own search key produc-
ers for different search patterns of arbitrary predi-
cates. Although search key producers are not sufficient
by themselves to support advanced searches such as
ranked and nearest neighbor (which require direct sup-
port from the underlying access methods), they bridge
the semantic gap between user-defined predicates and
the limited access methods that are available.

Users can define their own filters to avoid expen-
sive predicate evaluation. Multistage predicate evalu-
ation has been explored in [5, 6]. Researchers have also
investigated query optimization issues with expensive
predicates [7, 17] and with filtering using approximate
predicates [23]. Our contribution is in integrating mul-
tistage evaluation of predicates with the database en-
gine, especially the index manager, thus providing an
implementation framework where approximate predi-
cates can be utilized effectively for efficient query exe-
cution. As we have shown, the index filter 1s a powerful
technique that makes it possible to avoid the 1/O cost
of retrieving useless data into the memory buffer. Fur-
thermore, it offers an interesting mechanism to com-
bine multiple indexing mechanisms in a single search,
e.g., structured search with external full-text indexing.

The tight integration with the database engine
means that 1t is possible for query compiler to exploit
user-defined predicates in the standard framework of
query optimization. This means that the full querying
capabilities of SQL, including multiple predicates in
a WHERE clause, aggregate functions, subqueries and
recursion, are now available for universal applications
through DB2.
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