Computer Science > Artificial Intelligence
[Submitted on 23 Sep 2023]
Title:Heterogeneous Feature Representation for Digital Twin-Oriented Complex Networked Systems
View PDFAbstract:Building models of Complex Networked Systems (CNS) that can accurately represent reality forms an important research area. To be able to reflect real world systems, the modelling needs to consider not only the intensity of interactions between the entities but also features of all the elements of the system. This study aims to improve the expressive power of node features in Digital Twin-Oriented Complex Networked Systems (DT-CNSs) with heterogeneous feature representation principles. This involves representing features with crisp feature values and fuzzy sets, each describing the objective and the subjective inductions of the nodes' features and feature differences. Our empirical analysis builds DT-CNSs to recreate realistic physical contact networks in different countries from real node feature distributions based on various representation principles and an optimised feature preference. We also investigate their respective disaster resilience to an epidemic outbreak starting from the most popular node. The results suggest that the increasing flexibility of feature representation with fuzzy sets improves the expressive power and enables more accurate modelling. In addition, the heterogeneous features influence the network structure and the speed of the epidemic outbreak, requiring various mitigation policies targeted at different people.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.