skip to main content
10.1145/3581791.3596869acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

Hawkeye: Hectometer-range Subcentimeter Localization for Large-scale mmWave Backscatter

Published: 18 June 2023 Publication History

Abstract

Accurate localization of a large number of objects over a wide area is one of the keys to the pervasive interaction with the Internet of Things. This paper presents Hawkeye, a new mmWave backscatter that, for the first time, offers over (i) hundred-scale simultaneous 3D localization at (ii) subcentimeter accuracy for over an (iii) hectometer distance. Hawkeye generally applies to indoors and outdoors as well as under mobility. Hawkeye tag's Van Atta array design with retro-reflectivity in both elevation and azimuth planes offers 3D localization and effectively suppresses the multipath. Hawkeye localization algorithm is a lightweight signal processing compatible with the commodity FMCW radar. It uniquely leverages the interplay between the tag signal and clutter, and leverages the spectral leakage for fine-grained positioning. Prototype evaluations in corridor, lecture room, and soccer field reveal 7 mm median accuracy at 160 m range, and simultaneously localize 100 tags in only 33.2 ms. Hawkeye is reliable under temperature change with significant oscillator frequency offset. Demo video: https://tinyurl.com/4zkwxatu

References

[1]
Analog Devices. EVAL-ADRF5026. https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-adrf5026.html.
[2]
Analog Devices. EVAL-TINYRAD. https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-tinyrad.html.
[3]
D. Arnitz, K. Witrisal, and U. Muehlmann. Multifrequency continuous-wave radar approach to ranging in passive uhf rfid. IEEE transactions on microwave theory and techniques, 57(5):1398--1405, 2009.
[4]
S. Azzouzi, M. Cremer, U. Dettmar, R. Kronberger, and T. Knie. New measurement results for the localization of uhf rfid transponders using an angle of arrival (aoa) approach. In 2011 IEEE International Conference on RFID, pages 91--97. IEEE, 2011.
[5]
N. A. Bhatti, M. H. Alizai, A. A. Syed, and L. Mottola. Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences. ACM Trans. Sen. Netw., 12, 2016.
[6]
M. Bouet and A. L. Dos Santos. Rfid tags: Positioning principles and localization techniques. In 2008 1st IFIP Wireless Days, pages 1--5. Ieee, 2008.
[7]
M. Bouet and G. Pujolle. A range-free 3-d localization method for rfid tags based on virtual landmarks. In 2008 IEEE 19th international symposium on personal, indoor and mobile radio communications, pages 1--5. IEEE, 2008.
[8]
X. Chang, J. Dai, Z. Zhang, K. Zhu, and G. Xing. Rf-rvm: Continuous respiratory volume monitoring with cots rfid tags. IEEE Internet of Things Journal, 8(16):12892--12901, 2021.
[9]
R. Chaudhuri. Waves and Oscillations. Basic physics through problems series. New Age International, 2001.
[10]
K. Chawla, C. McFarland, G. Robins, and C. Shope. Real-time rfid localization using rss. In 2013 International Conference on Localization and GNSS (ICL-GNSS), pages 1--6. IEEE, 2013.
[11]
W. Chen, Y. Feng, M. Cardamis, C. Jiang, W. Song, O. Ghannoum, and W. Hu. Soil moisture sensing with mmwave radar. In Proceedings of the 6th ACM Workshop on Millimeter-Wave and Terahertz Networks and Sensing Systems, pages 19--24, 2022.
[12]
Z. Chi, X. Liu, W. Wang, Y. Yao, and T. Zhu. Leveraging ambient lte traffic for ubiquitous passive communication. In SIGCOMM, 2020.
[13]
K. M. B. et al. Omniscatter: Extreme sensitivity mmwave backscattering using commodity fmcw radar. In MobiSys, 2022.
[14]
M. Ettorre, W. A. Alomar, and A. Grbic. 2-d van atta array of wideband, wideangle slots for radiative wireless power transfer systems. IEEE Transactions on Antennas and Propagation, 66(9):4577--4585, 2018.
[15]
L. C. Haag and A. Jason. Drywall: terminal ballistic properties of forensic interest. AFTE Journal, 42, 2010.
[16]
M. K. Haider, Y. Ghasempour, D. Koutsonikolas, and E. W. Knightly. Listeer: mmwave beam acquisition and steering by tracking indicator leds on wireless aps. In MobiCom, 2018.
[17]
J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, W. Xi, Z. Jiang, and Z. Wang. Twins: Device-free object tracking using passive tags. IEEE/ACM Transactions on Networking, 24(3):1605--1617, 2015.
[18]
J. G. Hester and M. M. Tentzeris. Inkjet-printed flexible mm-wave van-atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless rfid implementations for iot smart skins. IEEE Transactions on Microwave Theory and Techniques, 64(12):4763--4773, 2016.
[19]
Hiwonder. H5S. https://hiwonder.hk/collections/humanoid-robot/products/h5s-hiwonder-16dof-intelligent-humanoid-dancing-robot-supports-entertaimnet-display.
[20]
J.-S. G. Hong and M. J. Lancaster. Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004.
[21]
K. Huang, R. Chen, and W. Gao. Rascatter: Achieving energy-efficient backscatter readers via ai-assisted power adaptation. In 2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI), pages 1--13. IEEE, 2022.
[22]
J. O. S. III. Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing, 2007.
[23]
Infineon Technologies. DEMO DISTANCE2GO. https://www.infineon.com/cms/en/product/evaluation-boards/demo-distance2go/.
[24]
C. Jiang, Y. He, X. Zheng, and Y. Liu. Orientation-aware rfid tracking with centimeter-level accuracy. In 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pages 290--301. IEEE, 2018.
[25]
V. Kallnichev. Analysis of beam-steering and directive characteristics of adaptive antenna arrays for mobile communications. IEEE Antennas and Propagation Magazine, 43(3):145--152, 2001.
[26]
N. C. Karmakar et al. Chipless rfid tag localization. IEEE transactions on Microwave Theory and Techniques, 61(11):4008--4017, 2013.
[27]
Keysight. DSOX1204G. https://www.keysight.com/us/en/assets/7018-06411/data-sheets/5992-3484.pdf.
[28]
J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim. The theory and design of chirp radars. The Bell System Technical Journal, 39(4):745--808, 1960.
[29]
H. Kong, X. Xu, J. Yu, Q. Chen, C. Ma, Y. Chen, Y.-C. Chen, and L. Kong. m3track: mmwave-based multi-user 3d posture tracking. In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services, pages 491--503, 2022.
[30]
S. K. Koul and B. Bhat. Microwave and millimeter wave phase shifters, volume 2. Artech House Norwood, MA, 1991.
[31]
R. Kronberger, T. Knie, R. Leonardi, U. Dettmar, M. Cremer, and S. Azzouzi. Uhf rfid localization system based on a phased array antenna. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pages 525--528. IEEE, 2011.
[32]
J. O. Lacruz, D. Garcia, P. J. Mateo, J. Palacios, and J. Widmer. mm-flex: an open platform for millimeter-wave mobile full-bandwidth experimentation. In MobiSys, 2020.
[33]
Leica. DISTO D510. https://shop.leica-geosystems.com/sites/default/files/2020-12/D510_792312d_en.pdf.
[34]
H. Li, C. Xu, A. S. Rathore, Z. Li, H. Zhang, C. Song, K. Wang, L. Su, F. Lin, K. Ren, et al. Vocalprint: A mmwave-based unmediated vocal sensing system for secure authentication. IEEE Transactions on Mobile Computing, 2021.
[35]
X. Li, Y. Zhang, and M. G. Amin. Multifrequency-based range estimation of rfid tags. In 2009 IEEE International Conference on RFID, pages 147--154. IEEE, 2009.
[36]
X.-Y. Li, M. Yin, Y. Zhang, P. Yang, C. Wan, X. Guo, and H. Tan. Back-guard: Wireless backscattering based user sensing with parallel attention model. IEEE Transactions on Mobile Computing, 2022.
[37]
Z. Li, Y. Shu, G. Ananthanarayanan, L. Shangguan, K. Jamieson, and P. Bahl. Spider: A multi-hop millimeter-wave network for live video analytics. In 2021 IEEE/ACM Symposium on Edge Computing (SEC), pages 178--191. IEEE, 2021.
[38]
Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib. 3d backscatter localization for fine-grained robotics. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages 765--782, 2019.
[39]
C. Luxey and J.-M. Laheurte. A retrodirective transponder with polarization duplexing for dedicated short-range communications. IEEE transactions on microwave theory and techniques, 47(9):1910--1915, 1999.
[40]
Y. Ma, N. Selby, and F. Adib. Minding the billions: Ultra-wideband localization for deployed rfid tags. In Proceedings of the 23rd annual international conference on mobile computing and networking, pages 248--260, 2017.
[41]
Macom. IV Data Madp-000907-14020. https://tinyurl.com/bddc6ypm.
[42]
Macom. MADP-000907-14020. https://cdn.macom.com/datasheets/MADP-000907-14020x.pdf.
[43]
A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yildirim, and P. Pawełłzak. Multi-hop backscatter tag-to-tag networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages 721--729. IEEE, 2019.
[44]
G. Mao, B. Fidan, and B. D. Anderson. Wireless sensor network localization techniques. Computer networks, 51(10):2529--2553, 2007.
[45]
M. Matin and A. Sayeed. A design rule for inset-fed rectangular microstrip patch antenna. WSEAS Transactions on Communications, 9(1):63--72, 2010.
[46]
M. H. Mazaheri, A. Chen, and O. Abari. mmtag: a millimeter wave backscatter network. In SIGCOMM, 2021.
[47]
Micro Crystal. CC1V-T1A. https://www.microcrystal.com/fileadmin/Media/Products/32kHz/Datasheet/CC1V-T1A.pdf.
[48]
Microsemi. Libero SoC v11.8. https://www.microsemi.com/product-directory/root/5485-libero-soc-v11-8-archive.
[49]
R. Miesen, F. Kirsch, and M. Vossiek. Holographic localization of passive uhf rfid transponders. In 2011 IEEE international conference on RFID, pages 32--37. IEEE, 2011.
[50]
D. L. Mills. Computer Network Time Synchronization: The Network Time Protocol. Taylor & Francis, 1 edition, 2010.
[51]
R. Nandakumar, V. Iyer, and S. Gollakota. 3d localization for sub-centimeter sized devices. In SenSys, 2018.
[52]
L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. Landmarc: Indoor location sensing using active rfid. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003.(PerCom 2003)., pages 407--415. IEEE, 2003.
[53]
J. Nolan, K. Qian, and X. Zhang. Ros: passive smart surface for roadside-to-vehicle communication. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021.
[54]
A. Oppenheim and R. Schafer. Digital Signal Processing. Prentice Hall international editions. Prentice-Hall, 1975.
[55]
OptiTrack. PrimeX 13. https://optitrack.com/cameras/primex-13/.
[56]
A. Parr, R. Miesen, and M. Vossiek. Inverse sar approach for localization of moving rfid tags. In 2013 IEEE International Conference on RFID (RFID), pages 104--109. IEEE, 2013.
[57]
J. Reed and G. Wheeler. A method of analysis of symmetrical four-port networks. IRE Transactions on Microwave Theory and Techniques, 4(4):246--252, 1956.
[58]
L. Shangguan and K. Jamieson. The design and implementation of a mobile rfid tag sorting robot. In MobiSys, 2016.
[59]
E. Sharp and M. Diab. Van atta reflector array. IRE Transactions on Antennas and Propagation, 8(4):436--438, 1960.
[60]
Y. Shu, P. Cheng, Y. Gu, J. Chen, and T. He. Toc: Localizing wireless rechargeable sensors with time of charge. ACM transactions on sensor networks (TOSN), 11(3):1--22, 2015.
[61]
X. Shuai, Y. Shen, Y. Tang, S. Shi, L. Ji, and G. Xing. millieye: A lightweight mmwave radar and camera fusion system for robust object detection. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, pages 145--157, 2021.
[62]
Skyworks. Si515. https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si515.pdf.
[63]
Soar-Xiang Tech. STMX1020-D. https://www.soared.com.tw/Content/Upload/files/micro-stage-series.pdf.
[64]
E. Soltanaghaei, A. Prabhakara, A. Balanuta, M. Anderson, J. M. Rabaey, S. Kumar, and A. Rowe. Millimetro: mmwave retro-reflective tags for accurate, long range localization. In MobiCom, 2021.
[65]
Toshiba. TAR5SB33. https://toshiba.semicon-storage.com/ap-en/semiconductor/product/power-management-ics/detail.TAR5SB33.html.
[66]
W.-J. Tseng, S.-B. Chung, and K. Chang. A planar van atta array reflector with retrodirectivity in both e-plane and h-plane. IEEE Transactions on Antennas and Propagation, 48(2):173--175, 2000.
[67]
J. Wang, F. Adib, R. Knepper, D. Katabi, and D. Rus. Rf-compass: Robot object manipulation using rfids. In Proceedings of the 19th annual international conference on Mobile computing & networking, pages 3--14, 2013.
[68]
J. Wang and D. Katabi. Dude, where's my card? rfid positioning that works with multipath and non-line of sight. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 51--62, 2013.
[69]
J. Wang, J. Xiong, X. Chen, H. Jiang, R. K. Balan, and D. Fang. Tagscan: Simultaneous target imaging and material identification with commodity rfid devices. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pages 288--300, 2017.
[70]
L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu. Tagoram: Real-time tracking of mobile rfid tags to high precision using cots devices. In Proceedings of the 20th annual international conference on Mobile computing and networking, pages 237--248, 2014.
[71]
S. Yang, M. Jin, Y. He, and Y. Liu. Rf-prism: Versatile rfid-based sensing through phase disentangling. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), pages 1053--1063. IEEE, 2021.
[72]
J. Zhang, X. Liu, T. Gu, X. Tong, S. Chen, and K. Li. Siloc: A speed inconsistency-immune approach to mobile rfid robot localization. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pages 1--10. IEEE, 2021.
[73]
R. Zhao, T. Woodford, T. Wei, K. Qian, and X. Zhang. M-cube: A millimeter-wave massive mimo software radio. In MobiCom, 2020.
[74]
J. Zhou and J. Shi. Rfid localization algorithms and applications---a review. Journal of intelligent manufacturing, 20(6):695--707, 2009.
[75]
J. Zhou, H. Zhang, and L. Mo. Two-dimension localization of passive rfid tags using aoa estimation. In 2011 IEEE International Instrumentation and Measurement Technology Conference, pages 1--5. IEEE, 2011.
[76]
F. Zhu, M. Ouyang, L. Feng, Y. Liu, X. Tian, M. Jin, D. Chen, and X. Wang. Enabling software-defined phy for backscatter networks. In Proceedings of the 20th Annual International Conference on Mobile Systems, Applications and Services, pages 330--342, 2022.

Cited By

View all

Index Terms

  1. Hawkeye: Hectometer-range Subcentimeter Localization for Large-scale mmWave Backscatter

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MobiSys '23: Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services
    June 2023
    651 pages
    ISBN:9798400701108
    DOI:10.1145/3581791
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 June 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. internet-of-things
    2. mmWave
    3. backscatter
    4. localization
    5. FMCW

    Qualifiers

    • Research-article

    Funding Sources

    • Samsung Research Funding & Incubation Center of Samsung Electronics
    • MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation)

    Conference

    MobiSys '23
    Sponsor:

    Acceptance Rates

    MobiSys '23 Paper Acceptance Rate 41 of 198 submissions, 21%;
    Overall Acceptance Rate 274 of 1,679 submissions, 16%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)566
    • Downloads (Last 6 weeks)54
    Reflects downloads up to 07 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media