Computer Science > Computation and Language
[Submitted on 30 Apr 2022]
Title:HateCheckHIn: Evaluating Hindi Hate Speech Detection Models
View PDFAbstract:Due to the sheer volume of online hate, the AI and NLP communities have started building models to detect such hateful content. Recently, multilingual hate is a major emerging challenge for automated detection where code-mixing or more than one language have been used for conversation in social media. Typically, hate speech detection models are evaluated by measuring their performance on the held-out test data using metrics such as accuracy and F1-score. While these metrics are useful, it becomes difficult to identify using them where the model is failing, and how to resolve it. To enable more targeted diagnostic insights of such multilingual hate speech models, we introduce a set of functionalities for the purpose of evaluation. We have been inspired to design this kind of functionalities based on real-world conversation on social media. Considering Hindi as a base language, we craft test cases for each functionality. We name our evaluation dataset HateCheckHIn. To illustrate the utility of these functionalities , we test state-of-the-art transformer based m-BERT model and the Perspective API.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.