
HARMONY TRANSFORMER: INCORPORATING CHORD
SEGMENTATION INTO HARMONY RECOGNITION

Tsung-Ping Chen and Li Su
Institute of Information Science, Academia Sinica, Taiwan
{tearfulcanon, lisu}@iis.sinica.edu.tw

ABSTRACT

Musical harmony analysis is usually a process of unfolding
and interpreting the hierarchical structure of music. Com-
putational approaches to such structural analysis are still
challenging, owing to the fact that the boundary between
different harmonic states (such as chord functions) is not
explicitly defined in the audio or symbolic music data. It is
a novel approach to improve chord recognition by jointly
identifying chord change using end-to-end sequence learn-
ing. In this paper, we propose the Harmony Transformer,
a multi-task music harmony analysis model aiming to im-
prove chord recognition through incorporating chord seg-
mentation into the recognition process. The integration of
chord segmentation and chord recognition is implemented
with the Transformer, a deep sequential learning model
yielding fruitful results in the field of natural language pro-
cessing. A non-autoregressive decoding framework is also
adopted here in aid of concatenating the two highly corre-
lated tasks. Experiments of both chord symbol recognition
and functional harmony recognition on audio and symbolic
datasets demonstrate that explicitly learning the hierarchi-
cal structural information of musical data can facilitate and
improve the harmony recognition.

1. INTRODUCTION

Automatic chord recognition is a hallmark research topic
in the field of music information retrieval (MIR) and has
been widely studied. In the past decade, this problem
has been dealt with by using a variety of deep learn-
ing methods ranging from multi-layer perceptrons (MLPs)
[1] to more complex models such as convolutional neu-
ral networks (CNNs) [2–6] and recurrent neural networks
(RNNs) [7–11]. Hybrid systems such as convolutional re-
current neural network (CRNN) are also introduced to the
chord recognition task for taking advantage of different
neural networks [12–15].

In spite of the significant achievements for deep learn-
ing models to advance the state of the art, further improve-
ment in the chord recognition task appears to be limited
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and has reached a glass ceiling [4]. Such limitations may
result from the incompetence for deep learning methods
to infer the hierarchical structure of music based on frame-
level data. An overlooked tendency in many previous stud-
ies is that the majority of chord recognition models regard a
music piece as a concatenation of semantically incomplete
segments, and therefore are ineffective to capture complex
musical grammar such as chord transition [13]. Figure 2
(see Section 4.4) depicts an example where an RNN model
cannot segment chord boundaries adequately when arpeg-
gios or key modulation exists. This problem was dealt
with by integrating temporal knowledge such as the metric
and beat information [16, 17], by adding post-processing
such as hidden Markov models (HMM) [18,19], or by fea-
ture engineering such as the harmonic change detection
function (HCDF) [20] and beat-synchronous audio fea-
tures [21]. One recent study attempted to solve this prob-
lem by incorporating models which recognize chords at
different levels, i.e., the frame level and the chord level,
and the cooperative models gained improved chord recog-
nition results [14].

In this paper, we propose the Harmony Transformer,
which jointly integrates chord recognition and chord seg-
mentation into an end-to-end chord recognition system.
The Harmony Transformer is based on the Transformer,
a deep neural network nowadays applied to a wide variety
of sequence modeling problems such as machine transla-
tion [22], natural language understanding [23], music gen-
eration [24], and so forth. For the encoder-decoder archi-
tecture of the Transformer, we assign the chord segmen-
tation task to the encoder, and the chord recognition task
to the decoder. This division allows the chord recogni-
tion network to benefit from the prediction of the chord
segmentation. In comparison to other designs using RNN,
which is considerably time-consuming owing to heavy se-
quential computations, the Transformer is more effective
in speed, as it enforces parallelization to process sequen-
tial data. The Harmony Transformer is also capable of a
complex analytic scenario—harmonic function 1 recogni-
tion [25]. Our experiment results highlight the advantage
of the proposed model to improve both the chord sym-
bol recognition and the harmonic function recognition. To
the best of our knowledge, this is the first work that con-
nects the chord segmentation task with the chord recog-
nition task through the Transformer framework. We hope

1 ‘Harmonic function’ refers to the diatonic function in music which
denotes the relationship of a chord to a tonal center.
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that our contribution facilitates more developments in au-
tomatic chord recognition.

2. HIERARCHICAL STRUCTURES AND CHORD
RECOGNITION

The chord recognition can be formulated as a sequence la-
beling task [26] that assigns a categorical label (e.g., chord
name) to each element of a given sequence (e.g., musical
sequence). Considering the sequential and structural na-
ture of music, chord recognition task resembles many nat-
ural language processing (NLP) problems, in such a way
that both the sequential arrangements of chords in mu-
sic and words in language are dominated by higher-level
rules—the function of harmony and the grammar in lan-
guage. A compelling recognition model for music or lan-
guage is, therefore, expected to unfold the intrinsic hierar-
chical structure of the sequences. A typical example is the
part-of-speech (POS) tagging task in NLP, which assigns a
specific part of speech to each word in a sentence. Albeit
many words can represent more than one part of speech
at different times, deep learning models have shown their
ability to regulate local-level assignments with a given con-
text, and demonstrated satisfactory performance. 2

On the other hand, the chord recognition results in re-
cent years still could not be satisfactory [1,8,13–15]. A pri-
mary difference between language and music is that each
word in the input sentence of the POS tagging task repre-
sents a semantically meaningful unit, whereas the musical
segments to be labeled in the chord recognition task are
not necessary harmonically completed. It can be argued
that the unsatisfying achievements in the chord recogni-
tion task can be associated with the deficiency of explicit
knowledge of the harmonic boundaries within a musical
sequence. Since the sequential property and the hierarchi-
cal structure are shared characteristics between language
and the harmonic progression, it would be advantageous
to introduce the segmentation information of harmony in
higher-level musical hierarchy into deep learning models
of chord recognition.

Recent research tackled the hierarchical issue of frame-
wise chord recognition using two RNN-based models to
separately predict the duration and the transition of each
chord in a parallel fashion [14]. Concretely, frame-wise
chord predictions are first generated through a CNN-based
acoustic model, which are then simultaneously fed into the
two RNN-based models—the chord duration model and
the harmonic language model to predict the time points of
chord change at the frame level and the chord progression
at the chord level respectively. The two RNN-based mod-
els are trained separately from the acoustic model, and are
utilized as language model which computes the probability
distribution of each token sequentially.

It has been demonstrated that incorporating musical hi-
erarchy is promising to improve chord recognition. Nev-

2 The per-token accuracy of the POS tagging task had surpassed
96% in 2000. For an overview of the state of the art of the
POS tagging task, see: https://aclweb.org/aclwiki/POS_
Tagging_(State_of_the_art).

ertheless, the local assignment of chord labels in practice
is dependent successively on the knowledge from differ-
ent hierarchical levels. We hence argue that 1) the chord
change and the chord progression should be modeled in a
vertical rather than a horizontal manner; in other words,
we suppose that the chord recognition problem belongs to
a higher level in the musical hierarchy than the chord seg-
mentation problem, and the recognition of chords should
base on the result of segmentation. 2) The models process-
ing higher-level information such as the two RNN-based
language models should be trained jointly with the lower-
level ones. In this study, we propose a new framework that
predicts chord progression for a given sequence according
to the chord segmentation result, and is trained in an end-
to-end manner.

3. THE HARMONY TRANSFORMER

The proposed model, as shown in Figure 1, follows the
encoder-decoder architecture of the Transformer [22],
while adopting a non-autoregressive framework for treat-
ing segmentation as the intermediate before the recogni-
tion process [27]. The encoder of the Harmonic Trans-
former performs the chord segmentation task from the in-
put data sequence (e.g., chroma), and the decoder performs
the chord recognition task from the input data sequence
along with the segmentation result from the encoder.

3.1 Basic units

The Harmony Transformer model is built on two computa-
tional units, that is, multihead-head attention (MHA) and
feed-forward network (FFN). The MHA unit takes three
inputs Q, K, and V, which stand for queries, keys, and
values, respectively. The three inputs are matrices with the
first dimension representing the number of time steps and
the second dimension being the number of feature; the fea-
ture sizes of the three inputs are usually the same, while
their number of time steps may be different.

In general, the MHA unit computes a weighted sum of
V based on the similarity between Q and K. To be more
exact, the inputs are first ‘transformed’ through an atten-
tion mechanism which outputs a head (denoted as D). The
MHA unit is then constructed by concatenating multiple
heads out of several attention mechanisms:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V , (1)

Di = Attention(QWQ
i ,KWK

i ,VWV
i ) , (2)

MHA(Q,K,V) = Concat(D1, · · · ,Dh)WD , (3)

where h is the number of heads, Di is the ith head, and
d is the dimension of feature. WD ∈ Rd×d, and WQ,
WK, WV ∈ Rd× d

h are all learnable parameter matrices.
Note that if Q = K = V, such attention mechanism is
called self-attention as the three inputs stand for the same
sequence; if Q 6= K = V, such attention mechanism is
called encoder-decoder attention in the case when K and
V come from the encoder and Q comes from the decoder.
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Figure 1. The architecture of the Harmony Transformer. During training, the chord change prediction penc from the
encoder is used to calculate the segmentation loss, while the decoder output Odec is used to calculate the recognition loss.

On the other hand, the FFN unit is constructed by two
fully-connected layers parameterized by weighted matri-
ces and bias vectors (W1,W2,b1,b2) and one activation
function in between the two layers:

FFN(X) = ReLU(XW1 + b1)W2 + b2 , (4) 3

where X is also a matrix like Q, K, or V, and
ReLU(X) := max(0,X) is the element-wise rectified lin-
ear unit activation. In practice, both the MHA and the FFN
computations include residual connections [28] and layer
normalization [29]:

MHA∗(Q,K,V) = LayerNorm(MHA(Q,K,V) + Q) ,

FFN∗(X) = LayerNorm(FFN(X) + X) .

In the rest of the paper, we omit the ∗ symbol for sim-
plicity. More detailed descriptions of MHA and FFN can
be found in Section 3.2 and Section 3.3 of [22].

3.2 Input embedding

We denote the sequence of frame-level features (e.g., pi-
ano roll or chromagram) with T time steps as X :=
[x1, . . . ,xT ]T, 4 in which xt is a feature vector of X at
time t. The data representation entering the Harmony
Transformer at time t, as denoted by X′t here, is a seg-
ment of X around t: X′t := [xt−τ , · · · ,xt+τ ]T, where the
length of the segment is 2τ+1. For the embedding process,
the encoder (or decoder) maps each X′t into an encoder (or

3 Note that the two additions in the equation are element-wise addi-
tions which will ‘broadcast’ the bias vectors to the same dimensions as
the matrices to be added.

4 In our notation, the normal T means the transpose of a matrix, while
the italic T indicates the number of time steps.

decoder) embedding through MHA and FFN units, then
flattens it into a vector eenct (or edect ). More specifically,
the embedding vector et which is to be fed into time step t
of either the encoder or the decoder is:

et = Flatten(FFN(MHA(X′t,X
′
t,X

′
t))W

e), (5)

where We is the parameter matrix to be learned, and
the encoder and the decoder use different set of parame-
ters. The embedding sequences for the encoder and the
decoder are then Eenc = [eenc1 , · · · , eencT ]T and Edec =
[edec1 , · · · , edecT ]T, respectively.

Moreover, since the computational units mentioned in
Section 3.1 are intrinsically unaware of the sequential or-
der of their inputs, the positional information is added to
the feature embeddings. In this work, we adopt the abso-
lute positional encoding composed of sinusoidal functions,
as used in [22]:

PEt,i =

{
sin(t/10000

i
d ) if i is even,

cos(t/10000
i
d ) if i is odd,

(6)

where t = 1, . . . , T is the time step, d is the embedding
size, and i = 1, . . . , d is the index of the embedding di-
mension. And PEt,i is added into the ith element of et.

3.3 Encoder: chord segmentation

The encoder is composed of L layers, each of which com-
prises a self-attention MHA unit and a FFN unit. In-
spired by [30], L softmax-normalized parameters are in-
troduced to the encoder for weighting the hidden states
of each layer. Formally, for the embedded sequence of
the encoder, Eenc, the encoder computes hidden states
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Henc
l := [henc

l,1 , · · · ,henc
l,T ]T at layer l, where hl,t denotes

the output at time t in the lth layer:

Henc
l = FFN(MHA(Henc

l−1,H
enc
l−1,H

enc
l−1)) ,

Henc
0 = Eenc .

(7)

The hidden states of all layers are then weighted by
the softmax-normalized parameters αenc := {αenc

l }Ll=1

to produce a weighted-sum representation Renc :=
[renc1 , · · · , rencT ]T with renct =

∑L
l=1 α

enc
l henc

l,t , which is
later taken as one of the inputs of the decoder. The pur-
pose of using the weighted sum of hidden states from all
layers instead of using the output of the last layer is that
different layers tend to encode specific information which
individual tasks may rely on to different extents [30–33].

To predict chord change, Renc is then fed into a fully-
connected layer followed by a sigmoid activation. That is,
the likelihood of chord change at time t is estimated by
the equation: penct = sigmoid(wTrenct ), where w are the
parameters to be learned for mapping each renct in Renc

into a real number. And the segmentation loss is calcu-
lated with penc := {penct }Tt=1 during training, as depicted
in Figure 1. In order to make use of the chord change pre-
diction for the later part of the chord recognition task, we
utilize deterministic binary neurons (DBNs) [34, 35] to bi-
narize the real-valued chord change probabilities with hard
thresholding. Accordingly, the final output of the encoder
oenc := {oenct }Tt=1 is a sequence of binary chord segmen-
tation prediction, which is 1 at the point of chord change,
or 0 otherwise: oenct = 1 if penct > 0.5 and oenct = 0 if
penct ≤ 0.5. That means, when oenct = 1, there is a chord
change at time t. For example, for a source sequence of
6 segments, oenc = [1, 0, 0, 1, 1, 0, ] means that there are
three chord regions with the first region containing three
segments, the second containing one segment, and the fi-
nal containing two segments.

3.4 Decoder: segmentation-informed chord
recognition

Similar to the encoder, the decoder also consists of L lay-
ers, while in each layer, there is an additional encoder-
decoder attention module besides the MHA and the FNN
modules to imitates the classical attention mechanism in
sequence-to-sequence models [36, 37]. Different from the
encoder, the input of the decoder is derived from three
sources: Edec, oenc, and Renc. First of all, the embed-
ded sequence of the decoder Edec is regionalized in line
with oenc to generate Ēdec. Precisely, let c := {ck}Kk=1 be
the K time steps where chord changes, i.e., oencck

= 1, then
the regionalization unit in Figure 1 replaces each member
edect in Edec with average pooling:

ēdect :=
1

ck+1 − ck

ck+1−1∑
i=ck

edeci for t ∈ [ck, ck+1) , (8)

and the resulting embedding is Ēdec := [ēdec1 , · · · , ēdecT ]T.
Next, the decoder takes the original embedding Edec, the
regionalized embedding Ēdec, and the weighted-sum rep-
resentation Renc to compute hidden states of the decoder

Hdec
l = [hdec

l,1 , · · · ,hdec
l,T ]T at layer l with the three mod-

ules in the layer:

Hdec
l = FFN(MHA(Zdec

l ,Renc,Renc)) , (9)

Zdec
l = MHA(Hdec

l−1,H
dec
l−1,H

dec
l−1) , (10)

Hdec
0 = Edec + Ēdec + Renc . (11)

The intuition of adding the regionalized embeddings
Ēdec to the decoder inputs is to guide the model to recog-
nize the sequence with the segmentation-level, or chord-
level information; and using Renc is to take the advantage
of the explicit alignment information of the sequence la-
beling problem for the encoder-decoder architecture [38].

Then, the decoder weighs the hidden states of all lay-
ers, as does in the encoder, with the softmax-normalized
parameters αdec := {αdec

l }Ll=1 to produce the final pre-
sentation Rdec of the decoder inputs:

Rdec = [rdec1 , · · · , rdecT ]T =
L∑
l=1

αdec
l Hdec

l . (12)

Finally, the representation Rdec is fed into a fully-
connected layer followed by a softmax activation to pre-
dict the probability distribution over the chord vocabulary
for each time step t in the source sequence:

Odec = [odec
1 , · · · ,odec

T ]T = softmax(RdecWO), (13)

where WO is the parameter matrix of the fully-connected
network which maps each rdect in Rdec into a vector of the
chord vocabulary size. And the recognition loss is calcu-
lated with Odec.

We denote the ground truth labels of chord change and
chord symbol as ôenc and Ôdec respectively. The total loss
function Ltotal in the Harmony Transformer is:

Ltotal := λ1BCE(penc, ôenc) + λ2CCE(Odec, Ôdec) , (14)

where BCE is the binary crossentropy, CCE is the categor-
ical crossentropy, and λ1 and λ2 are coefficients used for
balancing the two cross entropies. The two terms in (14)
correspond to the segmentation loss and the recognition
loss in Figure 1, respectively. 5

4. EXPERIMENTS

4.1 Data

The proposed model is evaluated on both audio and sym-
bolic datasets. For the audio part, we use the McGill
Billboard dataset, which consists of 890 musical pieces
sampled from the Billboard chart slots [39]. 6 For the
symbolic data, we use the BPS-FH dataset, in which the
first movements of Beethoven’s 32 piano sonatas are in-
cluded [25]. The chord annotations are available in the
two datasets; chord segmentation labels are further derived
from the chord annotations for the supervised training of
the chord segmentation task.

5 The implementation can be found at https://github.com/
Tsung-Ping/Harmony-Transformer.

6 The dataset can be found at http://ddmal.music.mcgill.
ca/research/billboard.
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Dataset BLSTM FK HT HT∗ F1 (Seg.)

Billboard 77.03 78.90 82.68 83.00 57.15
BPS-FH 78.87 - 83.96 84.18 66.65

Table 1. The chord symbol recognition results in term of
WCSR score. BLSTM stands for the 1-layer bidirectional
RNN using LSTM cells; both HT and HT∗ denote the pro-
posed model, except the tonal centroid vector is added into
the input feature of the latter. The F1 scores of the chord
segmentation of HT are shown in the rightmost column.

Function BLSTM HT

Key 72.62 78.35
Degree 47.75 65.06
Secondary 48.23 68.15
Quality 53.31 74.60
Inversion 61.59 62.13

F1 (Seg.) - 67.34

Table 2. The accuracy (in %) of harmonic function recog-
nition. Note that Degree stands for the accuracy of cor-
rectly predicting both the primary and secondary degrees,
and Secondary indicates the accuracy of correctly predict-
ing the degrees of secondary chords. The segmentation
result (with F1 measure) is shown in the bottom row.

4.1.1 Audio data

For each piece in the McGill Billboard dataset, the non-
negative-least-squares (NNLS) chromagram is computed
with the Chordino VAMP plugin, [40] in which the default
settings of the plugin are adopted. Combining the 12-D tre-
ble chroma and the 12-D bass chroma, for each track we
obtain a 24-by-T -dimensional chromagram, where T rep-
resents the length of the track. 7 Each input sequence for
the Harmony Transformer contains 100 segments (around
23 sec), and is generated through a sliding window of
frame size 21 with hop size 5. Following [13] (see Sec-
tion 2.2), pieces with id numbers smaller than 1000 are
used for training, and the remaining for testing; also, iden-
tical pieces are filtered out. As a result, there are 5,647
sequences for training and 1,628 sequences for testing.

4.1.2 Symbolic data

We represent the piano sonatas in the BPS-FH dataset as
pianorolls with the pitch ranging from A0 to G#7 (middle
C = C4), where the duration of each note is measured in
term of crotchet beats, and is quantized to 32th note. The
length of each sequence is 64, and each element in the se-
quence is a pianoroll segmented with window size of 33
and hop size of 2. As the input element for the Harmony
Transformer, each pianoroll segment is flattened into a vec-

7 For more information of the Chordino VAMP plugin and the
NNLS chromagram, please refer to http://www.isophonics.
net/nnls-chroma.

tor whose length is 84×33. We use 4-fold cross-validation
for evaluation; the number of sequences of each fold varies
from 368 to 585.

4.1.3 Data augmentation

All the training data are augmented with key modulation
and thus expanded to 12 times.

4.2 Experimental trials

For the Harmony Transformer (denoted as HT), we use the
embedding size d = 512, the number of heads h = 8, and
the number of layers of both the encoder and the decoder
L = 2. The two coefficients λ1 and λ2 in the loss function
are set to be 3 and 1 respectively. The chord symbol recog-
nition task is conducted for both audio and symbolic data,
and the harmonic function recognition task, as defined in
[25], is further applied to the symbolic dataset. Besides,
we employ the tonal centroid vector [20], which models
the relationship between chords in a 6-D tonal space, as
the additional input feature of the HT for better represent-
ing the input data.

4.2.1 Chord symbol recognition

The chord symbol recognition model has a 26-dimensional
output, in which 24 of them represent major and minor tri-
ads, 1 represents ‘others’ for chords other than major or
minor triads, and the remaining one represents the ‘no-
chord’ case. The weighted chord symbol recall (WCSR)
is used as the evaluation metric. We employ a 1-layer bidi-
rectional RNN using LSTM cells of 512 hidden units (ab-
breviated as BLSTM) as the baseline for the evaluations of
the two datasets. Additionally, we include the best evalua-
tion result achieved by the ConvNet-HMM model (denoted
as FK here) in [13] (see Section 3) for the comparison of
the evaluation on audio data. The FK model is similar to
the Madmom audio chord recognition framework, 8 which
achieves many state-of-the-art scores in the MIREX Audio
Chord Estimation (ACE) campaign. 9

4.2.2 Harmonic function recognition

We formulate the harmonic function recognition task as a
multi-task learning problem, in which the model outputs
segment-wise predictions of the 5 chord functions: local
key of 24 classes, primary degree of 21 classes, secondary
degree of 21 classes, chord quality of 10 classes, and chord
inversion of 4 classes. We use the classification accuracy
to measure the performance of the proposed model. The
BLSTM, as mentioned in Section 4.2.1, is also employed
for comparison. For more information about the terminol-
ogy of harmonic function, please refer to [25].

8 https://madmom.readthedocs.io/en/latest/
modules/features/chords.html.

9 See https://www.music-ir.org/mirex/wiki/2018:
Audio_Chord_Estimation_Results. The algorithm denoted as
FK2 in the website is part of the Madmom audio processing framework.
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Figure 2. The predictions of harmonic function by the proposed model HT and the BLSTM, where maj, min, and dom. 7th
stand for major, minor, and dominant seventh, respectively. Wrong predictions are marked in red. The example here is an
excerpt from Beethoven’s piano sonata No. 14, Op. 27-2, Mvt. 1, MM. 4-7.

4.3 Hyperparameters and training

The model is trained with the Adam optimization method
of the learning rate = 10−4, β1 = 0.9, β2 = 0.98,
ε = 10−9. To avoid overfitting, we employ dropout [41] of
rate = 0.6 and label smoothing [42] of the value εls = 0.1.
In addition, because the encoder output contains discrete
variables, i.e., the binary chord segmentation predictions
oenc, we utilize a straight-through estimator along with the
slope annealing trick [43] to estimate the derivative gradi-
ent during backpropagation.

4.4 Evaluation results

Table 1 shows the evaluation results of the chord sym-
bol recognition task. For the Billboard dataset, the per-
formance of the Harmony Transformer outperforms the
BLSTM and the FK by 5.65% and 3.78% respectively. For
the BPS-FH dataset, our model also surpasses the BLSTM
by 5.09%. When we employ the tonal centroid vector for
the input feature, the proposed model further boosts the
recognition results. This indicates that the explicit infor-
mation of harmonic change is useful for chord recognition.
The fact that the proposed model outperforms the BLSTM
in both audio and symbolic data exhibits our model’s ca-
pability of sequence learning even though the model con-
sists of no temporally recurrent computation. In addition,
based on the same training and evaluation data, the pro-
posed model performs better than the FK and therefore
may compete with the ACE framework of Madmom. Nev-
ertheless, the F1 scores for the segmentation task are not
satisfied due to the low recall rates (57.10% and 58.69%
for Billboard and BPS-FH). This indicates the challenge to
identify the exact time when chord changes.

For the harmonic function recognition task, the HT out-
performs the BLSTM in all of the five chord functions, as

shown in Table 2. In particular, for local key, chord degree,
secondary chord degree, and chord quality, the HT outper-
forms the BLSTM greatly by 5.73%, 17.31%, 19.92%, and
21.29%, respectively. This indicates that our model is able
to deal with challenging cases such as the key modulation,
and chords with special harmonic function. Figure 2 gives
an example of such instances. The HT correctly predicts
the chord progression in terms of local key, chord degree,
and chord quality, except that the timing of modulating to
E major is slightly later than the ground truth. Notably, the
F minor triad at the second half of measure 6, functioned as
a pivot chord in a common chord modulation, is precisely
identified by our model in spite of the key change. In con-
trast, the BLSTM not only fails to recognize the degree of
some chords in this example, but also mistakes the minor
triads as major ones, such as in measure 4.

5. CONCLUSION AND FUTURE WORK

We have demonstrated that the Harmony Transformer is
competent in harmony analysis. Built upon the commonal-
ity of musical chord recognition and natural language pro-
cessing, we emphasize the importance of modeling seg-
mental and hierarchical structures in music. The encoder-
decoder architecture and the non-autoregressive decoding
in the Harmony Transformer enhance the flexibility in
modeling chord sequences. Specifically, the end-to-end
combination of chord segmentation and chord recognition
contributes great benefits to the chord symbol recognition,
as well as to the joint recognition of five harmony func-
tions, a challenging task that relies heavily on the contex-
tual and structural information in music. Our model has
the potential to be further improved by using the segmen-
tation results to learn the word-level embedding, which has
also witnessed success in natural language processing.
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