
Graph Data Models, Query Languages and Programming
Paradigms ∗

[Tutorial Summary]

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

Yannis Papakonstantinou
UC San Diego

yannis@cs.ucsd.edu

ABSTRACT
Numerous databases support semi-structured, schemaless
and heterogeneous data, typically in the form of graphs (of-
ten restricted to trees and nested data). They also provide
corresponding high-level query languages or graph-tailored
programming paradigms.
The evolving query languages present multiple variations:

Some are superficial syntactic ones, while other ones are
genuine differences in modeling, language capabilities and
semantics. Incompatibility with SQL presents a learning
challenge for graph databases, while table orientation of-
ten leads to cumbersome syntactic/semantic structures that
are contrary to graph data. Furthermore, the query lan-
guages often fall short of full-fledged semistructured and
graph query language capabilities, when compared to the
yardsticks set by prior academic efforts.
We survey features, the designers’ options and differences

in the approaches taken by current systems. We cover both
declarative query languages, whose semantics is indepen-
dent of the underlying model of computation, as well as lan-
guages with an operational semantics that is more tightly
coupled with the model of computation. For the declar-
ative languages over both general graphs and tree-shaped
graphs (as motivated by XML and the recent generation of
nested formats, such as JSON and Parquet) we compare to
an SQL baseline and present SQL reductions and extensions
that capture the essentials of such database systems. More
precisely, rather than presenting a single SQL extension, we
present multiple configuration options whereas multiple pos-
sible (and different) semantics are formally captured by the
multiple options that the language’s semantic configuration
options can take. We show how appropriate setting of the
configuration options morphs the semantics into the seman-
tics of multiple surveyed languages, hence providing a com-
pact and formal tool to understand the essential semantic
differences between different systems.
∗Supported by NSF IIS129263, NSF SHB1237174, Informat-
ica Inc. gift and Couchbase Inc. gift.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3229879

Finally we compare with prior nested and graph query
languages (notably OQL, XQuery, Lorel, StruQL, PigLatin)
and we transfer into the modern graph database context
lessons from the semistructured query processing research
of the 90s and 00s, combining them with insights on current
graph databases.

PVLDB Reference Format:
A. Deutsch, Y. Papakonstantinou. Graph Data Models, Query
Languages and Programming Paradigms. PVLDB, 11 (12): 2106-
2109, 2018.
DOI: https://doi.org/10.14778/3229863.3229879

1. TUTORIAL TOPIC AND AUDIENCE
Numerous graph and nested databases promoted as SQL-

on-Hadoop, NewSQL and NoSQL support Big Data appli-
cations. These databases generally support semi-structured,
schemaless and heterogeneous data, which is the focus of this
tutorial. Broadly, the data models are either graphs, or trees
(nested data) as exemplified by JSON and variations thereof.
The databases provide corresponding query languages. We
review characteristic ones: Apache Hive [27], MongoDB [22],
Couchbase’s N1QL [12, 9], SPARQL [26], Neo4j’s Cypher
[13], Facebook’s GraphQL [17], Apache Spark SQL [25],
CosmosDB, Apache Gremlin [18], TigerGraph’s GSQL [19].
We use SQL-92 as the anchor of SQL compliance and also
comment on additional databases and query languages ([10,
11, 7, 6, 16, 5]).
The audience of this tutorial is roughly divided in

three categories: First, developers that want to use these
databases are overwhelmed by their number and want to
make sense of the options provided in this space. Second,
database language designers who are building new features
(for graph and nested data) and are interested in a deep
analysis of the available options. Third, database builders
and researchers who work on expanding the databases’ query
language abilities. Both parties face the challenges described
below regarding surveying and comparing models and query
languages, past and present. Both parties need a deep un-
derstanding of what is different from plain SQL. This tuto-
rial provides a deep understanding of the current data mod-
els and query languages of graph and nested data databases,
hence enabling comparisons.
The tutorial does not limit itself to the current status of

graph querying: The database builders and researchers need
to draw lessons from the rich body of past research on nested
[20, 24, 1], object-oriented [4] and semistructured data mod-
els and querying [14, 8, 23], which have been a topic of in-
tense database research: They were first researched in the

2106



form of labeled graphs in the mid-90s. Then semistructured
data research boomed in the form of XML and its labeled
tree abstraction. Many of the important language design
issues of the first eras must be recalled in the new era of
semistructured data.
More broadly, we compare SQL (which we use as a base-

line) with the recent crop of graph and nested databases and
connect the recent activity around graph and JSON query-
ing to the (much richer) past activity on nested relational,
OQL and XML/labeled tree models and respective query
languages and implementations.

2. CHALLENGES IN COMPREHENDING
THE SPACE OF GRAPH AND NESTED
DATA DBS

A first challenge is that the evolving semistructured query
languages have many variations. (By “semistructured" we
refer to both graph and nested data.) Some variations are
due to superficial syntactic differences that simply create
“noise" when one tries to understand and compare systems.
However, other variations are genuine differences in query
language capabilities and semantics.
Indeed, the evolving query languages of both the genuine

semistructured databases and the SQL/JSON databases fall
short of full-fledged semi-structured query language capa-
bilities - as set by early academic efforts in the 90s.1 The
designers of the new query languages can gain by under-
standing and picking the salient features of past full-fledged
declarative query languages for non-relational data models:
OQL [4], the nested relational model [20, 24, 1], XQuery,
and other XML query languages [23, 14, 8].
Part of the confusion around semistructured query lan-

guages is derived from the lack of compatibility with the well
known SQL. In the interest of broadening the audience, this
tutorial assumes that the audience is well-aware of SQL and
the standard material of graduate textbooks on SQL system
implementation. The tutorial does not assume knowledge of
other query languages. Consequently we explain the JSON
model and query languages as minimal extensions to SQL. In
particular SQL-92, as it represents the well-supported com-
mon denominator of all SQL systems and corresponds to
normalized databases. The tutorial does not require knowl-
edge of non-1NF, often proprietary, features that have been
added to SQL-92. Rather it only requires textbook SQL-92
language and teaches the non-1NF concepts, as well as the
graph concepts.
A final challenge in understanding the new space of

semistructured data is the lack of a succinct, mathemati-
cally clear, formal syntax and semantics by the vendors.
In summary, the mentioned challenges and confusions hurt

researchers and developers:

1. They inhibit a deep understanding of the capabilities
and important idiosyncracies of the various query lan-
guages. Potential users can be lost in superficial details
and miss fundamental points.

2. They impede progress towards declarative languages
and systems for querying semi-structured data. Lan-
guage designers and query processor implementors

1Most semistructured databases also fall significantly short
of full-fledged SQL capabilities.

need to appreciate the available options, in order to
proceed to well-designed fully-fledged languages and
efficient implementations thereof.

3. A SYSTEMATIC SURVEY OF MODEL
AND LANGUAGE OPTIONS AND VARI-
ATIONS

Step 1: Extending the relational model and SQL for
graphs As discussed above, part of the confusion is derived
from the lack of compatibility with the well-known, baseline
SQL, which both researchers and practitioners generally un-
derstand.
Towards a uniform explanation of the large space of cur-

rent and past systems, this tutorial reduces the declarative
languages to (minimally extended) SQL. We start by re-
calling the insight that graphs can be modeled as relational
databases by using appropriate vertex tables and edge ta-
bles. Vice versa, most relational databases can be viewed
as graphs whose vertices are tuples and whose edges are
key-foreign key pairs. We develop this analogy and show
that multi-way SQL join queries correspond to fixed-length
multi-hop path navigation. We then introduce a series of
minimal extensions that enhance the expressiveness of SQL
towards reaching that of graph query languages.
One extension introduces controlled amounts of recursion

via path expressions that specify reachability in the graph.
We track the concept’s evolution from early systems like
OQL [4], Lorel [2], WebSQL [21], StruQL [15] via the stan-
dard XPath/XQuery [28] and the de facto standard Regular
Path Queries (RPQs) [3], all the way to contemporary lan-
guages such as Cypher [13] and Gremlin [18]. Path expres-
sions may start with a variable, and multiple path expres-
sions may appear in the FROM clause, potentially correlated
with previously defined variables of the same FROM clause.
This correlation feature is ruled out by SQL-92 but it has
been prominently present since OQL.
Additional extensions collaborate towards ensuring lan-

guage compositionality, by enabling queries to output
graphs. A key enabler is the ability to invent fresh values to
model the identities of newly constructed nodes and edges.
This ability has its roots in object-oriented languages and
its various incarnations can be invoked by the programmer
either explicitly or implicitly. We additionally demonstrate
simultaneous construction of multiple linked tuples via each
application of the SELECT clause. Moreover, we show full
compositionality, in the sense that subqueries can appear
anywhere, potentially creating nested results when they ap-
pear in the SELECT clause.
Query languages for unrestricted graphs annotated with

scalar data are compared via reduction to this extended
SQL.
We next shift attention to a highly important class of

graphs: they are tree-shaped and annotated with non-
1NF data. This class is motivated by the plethora of
semistructured databases in circulation today for formats
such as JSON and Parquet (as well as their XML precur-
sors). Explicit id invention is not necessary any more, as
the construction of tree structures is accomplished by nested
(sub)queries. We draw the parallels between the two classes
of languages (semistructured and graph) highlighting the
simplifications emerging in the semistructured case. We in-
corporate into the discussion salient features of past full-

2107



fledged declarative query languages for non-relational data
models: SQL non-1NF features (starting with SQL 2003),
OQL, the nested relational model and query languages, and
XQuery (and other XML-based query languages).
An important issue, mostly discussed in the context

of semistructured query languages (but fundamentally ap-
plying broadly to graphs) is the treatment of schema.
The discussion includes language features that allow piv-
oting/unpivoting from schema to data and vice versa, thus
enabling “metadata” inspection.
The corresponding plethora of query languages is classi-

fied also via reduction to an SQL extension, Configurable
Graph SQL. Neglecting temporarily the “configurable" as-
pect (discussed in Step 2), one may think of the presented
language as an extension/modification of SQL-92 for graphs
and semistructured data.
In this tutorial, a new student/researcher of graph and

semistructured data, who missed the OQL and XQuery eras,
will be able to absorb the essential teachings of OQL and
XQuery while they are succinctly cast as a minimally mod-
ified SQL. We describe these modifications next, which will
enable an audience member with SQL background to com-
prehend the fundamentals of the extension to genuine JSON
databases with minimal effort.
After having taught Step 1, we will be able to show that

multiple model and language differences are superficial syn-
tactic differences.

Step 2: Substantial Semantic Differences However,
not all differences are superficial. Furthermore, this tutorial
does not suggest that the SQL extension (or some close de-
scendant thereof) will become a standard and remove the
many variations that are now found in this space. There is
too much variation and legacy for such to happen. Yet, the
language designers and researchers need to know now the
design options that are available to them and the options
that have been used by others, especially as pertaining to the
handling of schema-less aspects (semantics for paths leading
to nowhere, semantics for type mismatches, etc). Towards
this goal the tutorial stresses the Configurable aspect of the
presented SQL extension, which is essentially a guery lan-
guage generator. Depending on the configuration options
that are chosen for various features, different capabilities are
assumed and different semantics emerge.
One particular example where configuration options cap-

ture differences concisely, is the behavior of paths of the
various query languages in the absence of information. For
example, consider a JSON object {a:1, b:2} and a path
that navigates into the absent path c. Languages differ on
what is the result of c. Is it an error? Is it a special value?
If it is a special value, how does it behave in other features
of the query language? Is the query writer given control on
what special value may emerge or whether an error will be
thrown? A configuration option captures these differences
precisely.
By appropriate choices of configuration options, the Con-

figurable SQL++ semantics morphs into the semantics of
other query languages. Hence, the audience will be able
to understand the essential differences between the various
query languages, without being swamped by their superfi-
cial syntactic differences. Given the time constraints, the
tutorial will present a few examples of issues and classifica-
tions, leaving the complete surveying for an online survey
that the authors will have set up.

We expect that some of the results listed in the feature
matrices describing configuration options will change in the
next years as the space evolves rapidly. Despite the forth-
coming changes, we expect the configuration-based aspect
of our tutorial to remain a standing tool in understanding
the space, since by understanding each database’s capabili-
ties in terms of applicable options, the reader can focus on
the fundamental differences of the databases.
Step 3: Additional Features We will also discuss fea-
tures, many of which coming from XQuery, that have not
been captured by configuration options. These will prompt
a more open-ended discussion of language designs and trade-
offs. A notable one is type coercion - the approaches and
the pros and cons.
Step 4: Languages with Operational Semantics Tied
to the Computation Model Recently we have witnessed
a trend towards development of high-level graph query lan-
guages that are deliberately not purely declarative, instead
featuring an operational semantics tied to the underlying
computation model, which is typically a Bulk Synchronous
Parallel (BSP) instance presented as a variation of the Map-
Reduce programming paradigm. Prominent examples are
Gremlin and GSQL. We discuss this class of queries.
Open Issues Finally, we emphasize open issues in the ex-
pansion from structured to semistructured querying and
briefly discuss interoperability challenges induced by lan-
guage differences.

4. ADDITIONAL INFORMATION
Prerequisite Knowledge The attendees must have solid
knowledge of SQL-92, since it is the baseline upon which the
semistructured aspects are then added. Also solid knowledge
of relational algebra. Knowledge of SQL-2003 and/or XPath
are a plus but not required.
Alin Deutsch is a Professor of Computer Science and Engi-
neering at UCSD. His research pertinent to this tutorial cen-
ters around the design and optimization of semi-structured
query languages and on programming paradigms for graph
data analytics. Alin is the recipient of an ACM PODS
Test of Time Award, an ACM SIGMOD Top-3 Best Paper
Award (together with tutorial co-author Yannis Papakon-
stantinou), an Alfred P. Sloan fellowship, and an NSF Ca-
reer award. He has served as Senior Scientist of TigerGraph
Inc., a start-up that offers an engine capable of real-time
analytics on web-scale graph data. The analytic tasks are
expressed in a high-level graph query language called GSQL,
in whose design Alin was involved.
Yannis Papakonstantinou is a Professor of Computer
Science and Engineering at UCSD. A common theme of his
research is the extension of database platforms and query
processors beyond centralized relational databases and into
semistructured databases, integrated views of distributed
databases and web services, textual data and queries in-
volving keyword search. His research has received more
than 14,500 citations, according to Google Scholar, most of
which refer to his work on semistructured data, semistruc-
tured query processing and related middleware. In addi-
tion to his academic activity in middleware, semistructured
data and query processing, Yannis was the Chief Scientist of
Enosys Software, which built and commercialized an early
Enterprise Information Integration platform for structured
and semistructured data, utilizing XML and XQuery. The

2108



Enosys Software was OEM’d and sold under the BEA Liquid
Data and BEA Aqualogic brand names. Yannis currently
serves also as a consultant to Amazon Web Services.

5. REFERENCES

[1] S. Abiteboul, P. C. Fischer, and H.-J. Schek, editors.
Nested Relations and Complex Objects, volume 361 of
Lecture Notes in Computer Science. Springer, 1989.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The lorel query language for
semistructured data. Int. J. on Digital Libraries,
1(1):68–88, 1997.

[3] S. Abiteboul and V. Vianu. Regular path queries with
constraints. In Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 12-14, 1997, Tucson,
Arizona, USA, pages 122–133, 1997.

[4] F. Bancilhon, S. Cluet, and C. Delobel. A query
language for the O2 object-oriented database system.
In DBPL, pages 122–138, 1989.

[5] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li,
N. Onose, R. Vernica, A. Deutsch,
Y. Papakonstantinou, and V. J. Tsotras. ASTERIX:
towards a scalable, semistructured data platform for
evolving-world models. Distributed and Parallel
Databases, 29(3):185–216, 2011.

[6] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Y. Eltabakh, C.-C. Kanne, F. Özcan, and E. J.
Shekita. Jaql: A scripting language for large scale
semistructured data analysis. PVLDB,
4(12):1272–1283, 2011.

[7] (BigQuery:) Standard SQL Query Reference.
https://cloud.google.com/bigquery/docs/
reference/standard-sql/.

[8] A. Bonifati and S. Ceri. Comparative analysis of five
XML query languages. SIGMOD Record, 29(1):68–79,
2000.

[9] D. Borkar, R. Mayurum, G. Sangudi, and M. Carey.
Have your data and query it too: From key-value
caching to big data management. In SIGMOD
Conference, 2016.

[10] Cloudera Impala.
http://www.cloudera.com/content/cloudera/en/
products-and-services/cdh/impala.html.

[11] SQL Queries for Azure Cosmos DB.
https://docs.microsoft.com/en-us/azure/
cosmos-db/sql-api-sql-query.

[12] Couchbase. http://www.couchbase.com/.
[13] Neo4j’s Query Language Cypher. https:

//neo4j.com/developer/cypher-query-language/.
[14] A. Deutsch, M. F. Fernández, D. Florescu, A. Y. Levy,

and D. Suciu. A query language for XML. Computer
Networks, 31(11-16):1155–1169, 1999.

[15] M. F. Fernández, D. Florescu, A. Y. Levy, and
D. Suciu. Declarative specification of web sites with
strudel. VLDB J., 9(1):38–55, 2000.

[16] D. Florescu and G. Fourny. JSONiq: The history of a
query language. IEEE Internet Computing,
17(5):86–90, 2013.

[17] Facebook’s GraphQL. http://graphql.org/.

[18] Apache TinkerPop3 Gremlin. http://tinkerpop.
apache.org/docs/current/reference/.

[19] TigerGraph’s GSQL. http://doc.tigergraph.com/
GSQL-Tutorial-and-Demo-Examples.html.

[20] G. Jaeschke and H.-J. Schek. Remarks on the algebra
of non first normal form relations. In PODS, pages
124–138. ACM, 1982.

[21] A. O. Mendelzon, G. A. Mihaila, and T. Milo.
Querying the world wide web. Int. J. on Digital
Libraries, 1(1):54–67, 1997.

[22] MongoDB. http://www.mongodb.org/.
[23] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson.

XQuery 3.0: An XML query language, W3C
candidate recommendation, 2013. http:
//www.w3.org/TR/2013/PR-xquery-30-20131022/.

[24] M. A. Roth, H. F. Korth, and A. Silberschatz.
Extended algebra and calculus for nested relational
databases. ACM Trans. Database Syst., 13(4):389–417,
1988.

[25] Apache Spark SQL.
https://spark.apache.org/sql/.

[26] The RDF Query Language SPARQL. https:
//jena.apache.org/tutorials/sparql.html.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive -
a petabyte scale data warehouse using Hadoop. In
ICDE, pages 996–1005, 2010.

[28] The XQuery language. www.w3.org/TR/xquery, 2004.

2109

https://cloud.google.com/bigquery/docs/reference/standard-sql/
https://cloud.google.com/bigquery/docs/reference/standard-sql/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-sql-query
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-sql-query
http://www.couchbase.com/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
http://graphql.org/
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/
http://doc.tigergraph.com/GSQL-Tutorial-and-Demo-Examples.html
http://doc.tigergraph.com/GSQL-Tutorial-and-Demo-Examples.html
http://www.mongodb.org/
http://www.w3.org/TR/2013/PR-xquery-30-20131022/
http://www.w3.org/TR/2013/PR-xquery-30-20131022/
https://spark.apache.org/sql/
https://jena.apache.org/tutorials/sparql.html
https://jena.apache.org/tutorials/sparql.html

	Tutorial Topic and Audience
	Challenges in Comprehending the Space of Graph and Nested Data DBs
	A systematic survey of model and language options and variations
	Additional Information
	References

