Goal Recognition with Variable-Order Markov Models

Marcelo G. Armentano and Analia Amandi
ISISTAN Research Institute, Fac. Cs. Exactas, UNCPBA
Campus Universitario, Paraje Arroyo Seco, Tandil, 7000, Argentina
CONICET, Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina
{marmenta, amandi } @exa.unicen.edu.ar

Abstract

The recognition of the goal a user is pursing when
interacting with a software application is a crucial
task for an interface agent as it serves as a context
for making opportune interventions to provide as-
sistance to the user. The prediction of the user goal
must be fast and a goal recognizer must be able to
make early predictions with few observations of
the user actions. In this work we propose an ap-
proach to automatically build an intention model
from a plan corpus using Variable Order Markov
models. We claim that following our approach, an
interface agent will be capable of accurately rank-
ing the most probable user goals in a time linear to
the number of goals modeled.

1 Introduction

Interface Agents [Maes, 1994] are an assistive technology
that emerged to provide proactive and reactive assistance to
human users in their computer-based tasks in a personalized
manner. To accomplish their task of assisting users, inter-
face agents are designed to learn the interests, preferences,
priorities and needs of the following the metaphor of a per-
sonal assistant. However, interface agents not only have to
learn the user's preferences and habits regarding the use of
the application itself, but should also consider what the user
current goal is before initiating an interaction with him or
her. Considering the status of the user's attention (i.e. the
goal he is pursuing) and the uncertainty about the user's
intentions are critical factors for the effective integration of
automated services with direct manipulation interfaces
[Horvitz, et al. 1998]. For these reasons, it is desirable to
build agents capable of detecting as soon as possible the
user’s goal so that it can predict opportune moments for
gaining the user's attention.

A correct and early detection of the user’s goal will avoid
the agent interrupting the user in an improper moment. Us-
ers generally don't want to be interrupted while working on
a specific task, unless this interruption is strongly related to
the task they are performing [Whitworth, 2005]. By consi-
dering the user's intention the agent will be able to answer to
his requirements always in the realm of his current inten-
tion. For example, if the agent observes that the user is

1635

scheduling a work meeting for the following day, the agent
can offer to automatically complete the information required
and to send an email to each participant of the meeting,
providing that it knows the user's preferences about the kind
of meeting he is scheduling.

With this purpose, plan recognition aims at identifying
the goal of a subject based on the actions he or she performs
in an environment. The goal usually has one or more asso-
ciated plans that can predict the user's subsequent behavior.
Inputs to a plan recognizer are generally a set of goals the
agent expects the user to carry out in the domain, a set of
plans describing the way in which the user can reach each
goal, and an action observed by the agent. The plan recogni-
tion process itself, consists in foretelling the user's goal, and
determining how the observed action contributes to reach it.

Goal recognition is a special case of plan recognition in
which only the goal is recognized. Goal recognition is used
in domains in which it is better a fast detection of just the
user goal than a more precise but time consuming detection
of the complete user plan.

In this work we tackle the problem of automatically ac-
quiring a model of a user’s goals and the posterior detection
of the current user’s goal by means of variable order Mar-
kov models. The algorithm for learning such models is
based on the observation of the actions a user performs on a
software application and the goal that motivates the execu-
tion of those actions. The learning algorithm will build a
model of the actions the user performs to achieve each goal.
This model will then enable an interface agent both to detect
the intention the user has in any given moment, and the
actions or sequence of actions that he will probably perform
next to achieve his goal. The agent can use this information
as a context for future assistance, not to bother the user with
interventions that are not related to his main goal'.

2 Background and Related Work

Plan and goal recognition systems can be roughly grouped
in two main categories: Consistency and Probabilistic ap-
proaches.

! How the information about current user goal is used by the
interface agent is out of the scope of this work.

Consistency approaches face the problem by determining
which of an input set of goals is consistent with the ob-
served tasks. A goal G is consistent with an observed task
sequence A4 if A might have been executed in service of G.
Kautz [Kautz, 1991] provided the first formal theory of plan
recognition in which plans and goals are represented as an
event hierarchy which describes all the behavior that the
user might exhibit in some particular domain. Every ob-
served action is part of one or more top-level plans, and the
plan recognition task is to minimize the set of top-level
plans sufficient to explain the observed actions. The plan
recognizer presented in [Lesh, 1998] uses a consistency
graph that represents the relations between the actions and
possible goals of the domain. The system iteratively applies
pruning rules which remove from the graph the goals that
are not in any consistent plan, given the observed actions.
COLLAGEN [Rich et al., 2001], on the other hand, uses a
set of tasks distinguishing between primitive and high level
tasks. Then, it uses recipes to break down non primitive
tasks in sub-goals. Recipes are presented as functions that
map a task to a plan to perform that task.

Probabilistic approaches to plan recognition, on the other
hand, mainly make use of Bayesian networks [Charniak and
Goldman, 1993], [Horvitz et al., 1998], [Huber and Simp-
son, 2004] and Markov models [Davison and Hirsh, 1998],
[Gorniak and Poole, 2000], [Bui, 2003], [Blaylock and Al-
len, 2005].

Bayesian networks are a popular representation for rea-
soning under uncertainty because they combine a graphical
representation of causal relationships with a sound Bayesian
foundation. The directed acyclic graph structure of the net-
work contains representations of both the conditional de-
pendencies and independences between elements of the
problem domain. The knowledge is represented by nodes
called random variables and arcs representing the causal
relationships between variables. The strengths of the rela-
tionships are described using parameters encoded in condi-
tional probability tables (CPTs).

The structure of Markov models, on the other hand, is in
the form of a state transition graph. This simple structure is
due to its dependence in the Markov assumption to represent
sequences of events, which states that the occurrence of the
next event depends only on a fixed number of previous
events. Given some previously observed events, the next
event is predicted from the probability distribution of events
that followed those observed in the past.

Both kinds of approaches (consistency and probabilistic)
can lead to accurate predictions providing that the plan
library is complete and correct. However, probabilistic ap-
proaches can find the most probable intention when the
observations so far enable more than one possible intention;
consistency approaches cannot select between more than
one possible intention and have to wait for a single consis-
tent explanation, since they do not consider a priori likelih-
ood of different plans. There are some problems with Baye-
sian networks, however, that complicate the task of plan
recognition. These problems include that the result of the
inference process is not sensitive to the order in which evi-

1636

dence is entered in the network, that cycles are not allowed
by definition and that learning the structure and parameters
of the network from data is a very complex and time con-
suming task.

Regarding the learning of the plan libraries, most of the
previous approaches to the problem centered they efforts in
the recognition process itself based on a predefined hand-
coded plan library [Kautz, 1991] [Charniak and Goldman,
1993] [Horvitz et al., 1998] [Lesh, 1998] [Goldman et al.,
1999]. However, the success of a plan recognizer firstly
relies on the correctness and completeness of the plan li-
brary. For this reason, in the recent years researchers have
put special attention in the acquisition of plan libraries by
learning regularities in the user behavior. Nevertheless,
most of this research was conducted to learning the parame-
ters of the model, such as probabilities, while the structure
of the model itself remained fixed [Oliver et al., 2002] [Bui,
2003] [Liao et al., 2007] [Philipose, et al. 2004] [Nguyen et
al., 2005] [Duong, et al. 2006]. On the other hand, few ef-
forts were put on the task of learning plan libraries from the
interaction history of a user with a software application and
the proposed approaches are limited in the kind of plan
structures that they are able to model [Davison and Hirsh,
1998] [Bauer, 1999] [Gorniak and Poole 2000] [Garland et
al., 2001].

2 Variable Order Markov Intention Model

Markov models are a natural way of modeling sequences of
actions observed along time. In its simplest form, a Markov
chain is a stochastic process with the Markov property.
Having the Markov property means that, given the present
state, future states are independent of the past states. In
other words, the description of the present state fully cap-
tures all the information that could influence the future
evolution of the process. At each step the system may
change its state from the current state to another state, or
remain in the same state, according to a certain probability
distribution. The changes of state are called transitions, and
the probabilities associated with various state changes are
called transition probabilities.

Markov chains of fixed order are a natural extension in
which the future state is dependent on a fixed number of
previous staes, m. Although this extension is beneficial for
many domains, there are some main drawbacks in the use of
these models. First, only models with very small order are
of practical value since there is an exponential grown in the
number of states of Markov chains as their order is in-
creased. Second, for sequences of actions performed by a
user to achieve a given goal, the probability of the next
performed action is not always determined by the same
fixed number of previous actions. There is usually a variable
length previous context that determines the probability dis-
tribution of what the user may perform next.

Variable Order Markov (VOM) models arose as a solu-
tion to capture longer regularities while avoiding the size
explosion caused by increasing the order of the model. In
contrast to the Markov chain models, where each random
variable in a sequence with a Markov property depends on a

fixed number of random variables, in VOM models this
number of conditioning random variables may vary based
on the specific observed realization, known as confext.
These models consider that in realistic settings, there are
certain realizations of states (represented by contexts) in
which some past states are independent from the future
states leading to a great reduction in the number of model
parameters [Rissanen, 1983].

Algorithms for learning VOM models over a finite alpha-
bet X attempt to learn a probabilistic finite state automaton
(PFA) which can model sequential data of considerable
complexity. In contrast to M-order Markov models, which
attempt to estimate conditional distributions of the form
Pr(ols), with s € ZN and o € £, VOM algorithms learn
such conditional distributions where context lengths |s| vary
in response to the available statistics in the training data.
Thus, VOM models provide the means for capturing both
large and small order Markov dependencies based on the
observed data.

Ron et al. introduced an algorithm for learning VOM
models from data [Ron et al., 1996] and Armentano [Ar-
mentano, 2008] extended this algorithm to work incremen-
tally as new data is available. This model is described using
a subclass of PFA, which they called Probabilistic Suffix
Automata (PSA). For the construction of the PSA, a con-
struction called Prediction Suffix Tree (PST) is used. PST
preserves the minimal sub-sequences of variable length that
are necessary for precise modeling of the given statistical
source.

Transition probabilities are computed as follows. Let
el e?,---,e™ be the set of m training examples over the
alphabet X. The length of the i-th training example is given
by I;, that is e’ = el.el, -, e}, Vej € X. The empirical prob-
ability of a sequence s of length / is computed as shown in
Equation 1.

Zi,j}(_i;j
i st 1;z)s| L= (s1=1)

P(s) =
o (1
; —_ l L
where i/ = {1 if $1,82,, 50 = €, €,
0 otherwise]
The numerator is the number of times the sequence s was

observed in the sample and the denominator is an estimation
of the maximal number of possible overlapping occurrences
a pattern of the same length could have had.

The conditional empirical probability of observing an ac-
tion o right after a given sequence s is given by Equation 2.

P(s-o
Q)
P(s)

The training algorithm [Armentano, 2008] involves build-
ing a suffix tree where each node is labeled with a string up
to a predetermined length L. It keeps track of the number of
times each symbol o is observed in each context s. Transi-
tion probabilities are then computed using Equation 2 and a
pruning procedure is applied to build a prediction suffix
tree. The pruning procedure eliminates those nodes with
similar prediction capabilities to other nodes corresponding
to shorter contexts. It also eliminates nodes corresponding

i
PG+ li-1)

P(ols) =

1637

to rarely observed sub-sequences and nodes that do not
predict any action with a significant probability value. All
these pruning schemes are controlled by a set of parameters
of the learning algorithm. Finally, a smoothing technique is
applied to face the fact that an action that was not observed
in a given context in the training examples might be ob-
served when the PST is used for prediction. If y,,;, is the
minimum probability we allow the PST to assign to any
action in a given context (which corresponds to the execu-
tion of an unobserved task in the context), the algorithm
collects a probability mass of ||y, from the observed
tasks in the given context and then redistributes it among all
the tasks in that context. To prevent negative numbers we
must assure that Y, < 1/[Z]

The PST structure is then converted to an equivalent
Probabilistic Suffix Automata that is able to assign a proba-
bilistic value to a sequence of observed actions in a time
linear to the length of the sequence.

3 Goal Recognition with a Variable Order
Markov Intention Model

Once the agent owns a model of a user's intentions, it should
be able to make use of it to recognize the user's intention
while he/she interacts with the application. When checking a
given sequence » against a PSA, we initialize the automata
in its unique initial state (that corresponding to the empty
context) and for each task in the sequence we simply follow
the states transitions and compute the probability of the
sequence by multiplying the probability of the correspond-
ing task at each state. This process is linear to the length of
the sequence.

To perform goal recognition, the agent will have a PSA
model for each goal. By having a separate model for each
goal, the agent will be able to track several goals that are
being pursued simultaneously by the user. The goal recogni-
tion process itself will consist in classifying any given se-
quence of tasks performed by the user into one of the possi-
ble user goals that is into one of the PSA models. For doing
so, as the user performs tasks in the application the conven-
tional use of PSAs (or PSTs) for classification will make the
corresponding state transitions and compute the probability
that each PSA k generated the given sequence of tasks as
shown in Equation 3, where y(s;_4, 0;) indicates the transi-
tion probability in state s;.; for the observation G; (s, is the

state corresponding to the empty sequence)
7|

PSAL(r = o1, o)) = HV(Si—l' o) 3)
i=1

i=

Then, the goal recognizer would select the PSA that as-
signs the maximum probability as the PSA corresponding to
the user's intention. However, as the user continues perform-
ing tasks, the total cumulative probability value assigned by
each PSA will become smaller and smaller as we are mul-
tiplying values in the range (0,1]. Furthermore, we are inter-
ested in giving more importance to recent observations than
to older observations in a way that we can better detect the
underlying trend in the process.

Furthermore, the problem we are facing is not a classical
problem of classification as we do not predict a “class”
(goal) after observing a complete sequence of performed
actions. In our domain, the interface agent should be able to
predict the most probable goal after each performed action,
and the limit between sequences of actions corresponding to
different goals is often fuzzy.

To tackle this problem we choose to use an exponential
moving average on the prediction probability y (s, o) at each
step in each PSA as the predicted value for each correspond-
ing user intention. Moving averages are one of the most
popular and easy to use tools to smooth a data series and
make it easier to spot trends. An exponential moving aver-
age (EMA) [Hunter, 1986] is a statistic for monitoring a
process that averages the data in a way that gives less and
less weight to data as time passes. This is done by applying
weighting factors which decrease exponentially, giving
much more importance to recent observations while still not
discarding older observations entirely.

By the choice of a weighting factor 0 < 1 < 1, the EMA
control procedure can be made sensitive to a small or gra-
dual drift in the process. A may be expressed as a percen-
tage, so a smoothing factor of 10% is equivalent to A=0.1.
Alternatively, A may be expressed in terms of N time pe-
riods, where A = 2/N + 1.

EMA, expresses the value of the EMA at any time period
t. EMA, is set to the a priori probability of the first observed
action o. Then, the computation of the EMA at time pe-
riods t > 2 is done according to Equation 4.

EMAt = /1}/(5}_1, O—t) + (1 - A)EMAt_l (4)

The parameter A determines the rate at which older prob-
abilities enter into the calculation of the EMA statistic. A
value of A=1.0 implies that only the most recent measure-
ment influences the EMA. Thus, a large value of A gives
more weight to recent probabilities and less weight to older
probabilities; a small value of A gives more weight to older
probabilities. The value of A is usually set between 0.2 and
0.3 [Hunter, 1986] although this choice is somewhat arbi-
trary and its value should be determined empirically.

After each observation, the goal recognizer computes the
EMA value for each PSA model and builds a ranking cor-
responding to the most probable goals the user may be pur-
suing at each moment. Then, if the most probable goal has
an EMA value over a given confidence threshold 7 it makes
a prediction. The goal recognizer is also able to make pre-
dictions of the N-best goals in the ranking, instead of only
the most probable goal. This is useful to make further analy-
sis on this reduced set of the N most probable goals.

4 Experimental evaluation

4.1 The plan corpus

Plan corpus is the term used to describe a set of plan ses-
sions and consists of a list of goals and the actions a user
executed to achieve them. Although many corpora is availa-
ble for testing Machine Learning algorithms in other do-
mains, corpora for training plan recognizers are hard to

1638

obtain. There are a few plan recognizers [Lesh, 1998; Bauer,
1999; Garland and Lesh, 2002; Stumpf et al., 2005; Blay-
lock and Allen, 2005] that make use of corpora to build the
plan library and a few others for which the sequences of
actions collected are not labeled with the user goal [Davison
and Hirsh, 1998; Gorniak and Poole, 2000] which are not
used for plan recognition but for next action/command pre-
diction. Moreover, each of the plan recognizers using plan
corpora to learn the plan library uses its own data making
comparison between them difficult.

For our experiments we selected to use the Linux Plan
Corpus kindy provided by Nate Blaylock. This plan corpus
[Blaylock and Allen, 2005] is modeled after Lesh's Unix
Plan Corpus [Lesh, 1998] and was collected from 56 human
Linux users at the University of Rochester's Department of
Computer Science. Users involved volunteer students, facul-
ty and staff with different levels of expertise in the use of
Linux, categorized from 1 (lowest) to 5 (highest).

Each user was given English descriptions of a set of 19
goals and was instructed to solve them using any Linux
commands with some restrictions, such as not using pipes or
some special commands which simplifies achieving the
desired goal. Users were given the possibility of performing
more than one session for each goal.

All sessions, consisting in the sequence of commands
performed by a user to achieve a given goal, were automati-
cally recorded. At the end of the session the user was asked
to indicate whether he/she succeeded or not in achieving the
goal. Other information was also recorded in the session,
such as the time the session was initiated, the directory
structure and the system response after each command,
among others. For more details about how the data was
collected, refer to [Blaylock and Allen, 2005].

The first step in our experiments was to pre-process the
raw user sessions. From the data recorded for each user
session, we were only interested in the user goal and in the
sequence of commands he/she performed. We automatically
removed commands with typos from each session, and ses-
sions consisting in only 1 command. Attributes, flags and
parameters for the rest of the commands were removed so
that we only kept the name of the command as action sche-
mas. There is an exception for two commands, /s and find,
for which some flags change the command functionality.
For these commands we create more than one action sche-
mas as detailed below.

The command find, which searches the directory tree
rooted at each given file name by evaluating a given expres-
sion, was split in four action schemas: find-ctime,
representing the command "find [path...] -ctime n" which
searches for files whose status was last changed n*24 hours
ago; find-name, representing the command " find [path...] -
name pattern" which searches for files whose name matches
the given pattern; find-size, representing the use of the
command find [path...] -size s" which searches for files
using s units of storage space; and the action schema find
grouping all other uses of the command.

In a similar fashion, command /s, which lists information
about files in the current directory by default, was split in

two action schemas: /s-R, representing the command /s -
R", which lists information about files in the base directory
and recursively in its subdirectories; and /s grouping all
other uses of the command.

After preprocessing, we got 19 goal schemas and 48 ac-
tion schemas resulting from the plan corpus.

4.2 Evaluation metrics

In the experiments shown in this section we evaluate three
different metrics. The error for a model Q given an ob-
served task sequence Seq=aj, ..., a, is computed as the sum
of the absolute differences between the value assigned by
the model after observing each task, QO(a), and the highest
value assigned by any of the PSAs after observing that task,
Opesi(a), as shown in Equation 5.

errory(Seq = a;,ay, ..., a) (5)
£11Q(a;) — Qpese(ay)|
Z?:l Qbest (ai)

On the other hand, precision measures the number of
times a model O was in the N-best predicted models,
besty(a;), divided the number of predictions made, m, as
shown in Equation 6. We consider that the goal recognizer
makes a prediction every time the higher value assigned by
any PSA after some observations is over a threshold t
. . Z?zl beStQ (ai) (6)
precisiony(Seq = ay,ay, ..., 4y) = ——————

On the other hand, convergence is a metric that indicates
how much time the recognizer took to converge in what the
current user goal was. If from the time step # to the time step
corresponding to the last performed action for the current
goal the algorithm predicted correctly the actual user goal,
the convergence is computed as shown in Equation 7. The
time step ¢ is called convergence point.

m—t+1 (7)

convergencey(Seq = a;,ay, ..., ay) = ———,
m

with not_besty(a,—1) and best, (aj) Vit<j<n

where best,(a;) = {(1) Z}?;‘:Z; Tpest (@)

4.3 Goal schema recognition

For our experiments, we trained 19 different PSA models,
one for each goal schema in the plan corpus, using the se-
quences of action schemas performed by the different users
that took part in the experiments. Next, we performed leave-
one-out cross validation to evaluate the performance of our
goal recognizer.

We evaluate different values of the smoothing factor A
varying from 0.1 to 1.0 with intervals of 0.1. We also eva-
luate different thresholds t to make predictions.

For all the experiments, a value of A=0.3 and 1=0.2 led to
better results. Table 1 shows the recognition results for the
Linux corpus.

1639

We obtained an error of 1.15%. Notice that the error me-
tric is independent of the number of models we consider for
prediction because this metric measures the distance in the
prediction of the current user goal from the model that is
predicted with highest probability by the plan recognizer.

N-best 1-best 2-best 3-best

Error 0.115 0.115 0.115
Precision 0.646 0.765 0.808
Convergence 0.589 0.706 0.745

Table 1: Goal schema recognition results

On the other hand, we obtained a precision of 64.6% that
is increased to 80.8% for the case of 3-best prediction, with
a convergence of 58.9% for 1-best prediction. Convergence
can be increased to 74.5% by considering 3-best prediction.

These values improve results presented in Blaylock re-
search [Blaylock and Allen, 2005] for a bigram model of the
user goals. By using variable order Markov models with
exponential moving average, we got an increment of 21.5%
better convergence for 1-best prediction, 14.1% for 2-best
prediction and 14.8% for 3-best prediction. Precision on the
other hand was improved by 26.8% for 1-best prediction,
12.4% for 2-best prediction and 7.1% for 3-best prediction.
Since our goal recognizer has the same complexity of O(|Gl)
than Blaylock’s goal recognizer, where G is the set of goal
schemas in the domain, we believe that our improvements
are significant.

6 Conclusions and future work

We have presented a goal schema recognition approach
based on variable order Markov models to extend existent
approaches that use fixed order Markov models (especially
unigrams and bigrams models). We also make use of a
smoothing technique, namely an exponential moving aver-
age, to better detect the underlying trend in the predictions.

Our plan recognizer is able to make partial predictions af-
ter each observed task and takes a linear time in the number
of goals modeled.

There are several areas of future work that we are explor-
ing such as hierarchical goal recognition and handling pa-
rameterized goals and actions. A simple solution might be to
extend the number of actions creating one action for every
pair <action schema, parameter>. However, this approach
produces an explosion in the number of actions besides data
sparseness, because the likelihood of observing a symbol in
a given context will be very low.

Finally, the initial results presented in this work are based
on a relatively small dataset for one particular domain. Ex-
ploration of other domains with different characteristics will
be required to ensure that the performance of the goal re-
cognizer is consistent with the results we obtained in this
work.

References

[Armentano, 2008] Armentano, M. G. Recognition of User
Intentions with Variable-Order Markov Models. PhD

thesis, Universidad Nacional del Centro de la Provincia
de Buenos Aires. Argentina. 2008.

[Bauer, 1999] Bauer, M. From interaction data to plan libra-
ries: A clustering approach. In IJCAI '99: Proceedings of
the 6th International Joint Conference on Artificial Intel-
ligence, pages 962-967, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc. 1999.

[Blaylock and Allen, 2005] Blaylock, N. and Allen, J. Re-
cognizing instantiated goals using statistical methods. In
Gal Kaminka, editor, IJCAI Workshop on Modeling Oth-
ers from Observations (MOO-2005), pages 79-86, Edin-
burgh. 2005.

[Bui, 2003] Bui, H. H. A general model for online probabil-
istic plan recognition. In Gottlob, G. and Walsh, T., edi-
tors, IJCAI 03, Proceedings of the 8th International
Joint Conference on Artificial Intelligence, pages 1309-
1318, Acapulco, Mexico. Morgan Kaufmann. 2003.

[Charniak and Goldman, 1993] Charniak, E. and Goldman,
R. P. (1993). A bayesian model of plan recognition. Ar-
tificial Intelligence, 64(1):53-79. 1993.

[Davison and Hirsh, 1998] Davison, B. D. and Hirsh, H.
Predicting sequences of user actions. In Predicting the
Future: Al Approaches to Time Series. AAAI Press.
1998.

[Duong et al., 2006] Duong, T. V., Phung, D. Q., Bui, H. H.,
and Venkatesh, S. Human behavior recognition with ge-
neric exponential family duration modeling in the hidden
semi-markov model. In International Conference on
Pattern Recognition, volume 3, pages 202-207. 2006.

[Garland and Lesh, 2002] Garland;, A. and Lesh, N. Learn-
ing hierarchical task models by demonstration. Technical
report, Mitsubishi Electric Research Laboratories. 2002.

[Goldman et al., 1999] Goldman, R., Geib, C., and Miller,
C. Learning hierarchical task models by defining and re-
defining examples. In Proceedings of the 15th Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-99), pages 245-254, San Francisco, CA. Morgan
Kaufmann. 1999.

[Gorniak and Poole, 2000] Gorniak, P. and Poole, D. Build-
ing a stochastic dynamic model of application. In Bou-
tilier, C. and Goldszmidt, M., editors, 6th Conference on
Uncertainty in Artificial Intelligence (UAI-2000), pages
230-237, Stanford University, Stanford, California,
USA. Morgan Kaufmann. 2000.

[Horvitz et al., 1998] Horvitz, E., Breese, J., Heckerman, D.,
Hovel, D., and Rommelse, K. The Lumicre project:
Bayesian user modeling for inferring the goals and needs
of software users. In Cooper, G. F. and Moral, S., edi-
tors, Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence, pages 256-265, San Mateo.
Morgan Kaufmann. 1998.

[Huber and Simpson, 2004] Huber, M. and Simpson, R.
Recognizing the plans of screen reader users. In Model-
ing Other Agents from Observations (MOO2004). Work-

1640

shop W3 at the International Joint Conference on Auto-
nomous Agents and Multi-Agent Systems, Columbia
University, NY, USA. 2004.

[Hunter, 1986] Hunter, J. S. The exponentially weighted
moving average. Journal of Quality Technology,
18(4):203-209. 1986.

[Kautz, 1991] Kautz, H. A formal theory of plan recognition
and its implementation. In Allen, J. F., Kautz, H. A., Pe-
lavin, R., and Tenenberg, J., editors, Reasoning About
Plans, pages 69-125. Morgan Kaufmann Publishers, San
Mateo (CA), USA. 1991.

[Lesh, 1998] Lesh, N. (1998). Scalable and Adaptive Goal
Recognition. PhD thesis, University of Washington.
1998.

[Liao et al., 2007] Liao, L., Patterson, D. J., Fox, D., and
Kautz, H. A. Learning and inferring transportation rou-
tines. Artificial Intelligence, 171 (5-6) pages 311-331.
2007.

[Maes, 1994] Maes, P. Agents that reduce work and infor-
mation overload. Communications of the ACM. 1994.

[Nguyen et al., 2005] Nguyen, N. T., Phung, D. Q., Venka-
tesh, S., and Bui, H. H. Learning and detecting activities
from movement trajectories using the hierarchical hid-
den Markov model. In IEEE Computer Vision and Pat-
tern Recognition or CVPR, pages 955-960. IEEE Com-
puter Society. 2005.

[Oliver et al., 2002] Oliver, N., Horvitz, E., and Garg, A.
Layered representations for human activity recognition.
In Proceedings of the 4th IEEE International Conference
on Multimodal Interfaces (ICMI 2002), pages 3-8. IEEE
Computer Society. 2002.

[Philipose et al., 2004] Philipose, M., Fishkin, K. P., Perko-
witz, M., Patterson, D. J., Fox, D., Kautz, H., and Hah-
nel, D. Inferring activities from interactions with objects.
Pervasive Computing Magazine, 3(4) pages 10-17. 2004.

[Rich et al., 2001] Rich, C., Sidner, C. L., and Lesh, N.
(2001). COLLAGEN: Applying collaborative discourse
theory to human-computer interaction. A/ Magazine,
22(4) pages 15-26. 2001.

[Rissanen, 1983] Rissanen, J. "A Universal Data Compres-
sion System". IEEE Transactions on Information Theory
29 (5): 656-664. 1983.

[Ron et al., 1996] Ron, D., Singer, Y., and Tishby, N. The
power of amnesia: Learning probabilistic automata with
variable memory length. Machine Learning, 25(2-
3):117-149. 1996.

[Stumpf et al., 2005] Stumpf, S., Bao, X., Dragunov, A.,
Dietterich, T. G., Herlocker, J., Johnsrude, K., Li, L.,
and Shen, J. Predicting user tasks: I know what you're
doing! In 20th National Conference on Artificial Intelli-
gence (AAAI-05), Workshop on Human Comprehensible
Machine Learning. 2005.

[Whitworth, 2005] Whitworth, B. Polite computing. Beha-
viour and Information Technology, 24(5):353-363. 2005.

