Computer Science > Robotics
[Submitted on 27 Jul 2024]
Title:Genetic Algorithm-based Routing and Scheduling for Wildfire Suppression using a Team of UAVs
View PDF HTML (experimental)Abstract:This paper addresses early wildfire management using a team of UAVs for the mitigation of fires. The early detection and mitigation systems help in alleviating the destruction with reduced resource utilization. A Genetic Algorithm-based Routing and Scheduling with Time constraints (GARST) is proposed to find the shortest schedule route to mitigate the fires as Single UAV Tasks (SUT). The objective of GARST is to compute the route and schedule of the UAVs so that the UAVS reach the assigned fire locations before the fire becomes a Multi UAV Task (MUT) and completely quench the fire using the extinguisher. The fitness function used for the genetic algorithm is the total quench time for mitigation of total fires. The selection, crossover, mutation operators, and elitist strategies collectively ensure the exploration and exploitation of the solution space, maintaining genetic diversity, preventing premature convergence, and preserving high-performing individuals for the effective optimization of solutions. The GARST effectively addresses the challenges posed by the NP-complete problem of routing and scheduling for growing tasks with time constraints. The GARST is able to handle infeasible scenarios effectively, contributing to the overall optimization of the wildfire management system.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.