Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Aug 2023 (v1), last revised 16 Aug 2023 (this version, v2)]
Title:Generative Approach for Probabilistic Human Mesh Recovery using Diffusion Models
View PDFAbstract:This work focuses on the problem of reconstructing a 3D human body mesh from a given 2D image. Despite the inherent ambiguity of the task of human mesh recovery, most existing works have adopted a method of regressing a single output. In contrast, we propose a generative approach framework, called "Diffusion-based Human Mesh Recovery (Diff-HMR)" that takes advantage of the denoising diffusion process to account for multiple plausible outcomes. During the training phase, the SMPL parameters are diffused from ground-truth parameters to random distribution, and Diff-HMR learns the reverse process of this diffusion. In the inference phase, the model progressively refines the given random SMPL parameters into the corresponding parameters that align with the input image. Diff-HMR, being a generative approach, is capable of generating diverse results for the same input image as the input noise varies. We conduct validation experiments, and the results demonstrate that the proposed framework effectively models the inherent ambiguity of the task of human mesh recovery in a probabilistic manner. The code is available at this https URL
Submission history
From: Hanbyel Cho [view email][v1] Sat, 5 Aug 2023 22:23:04 UTC (10,053 KB)
[v2] Wed, 16 Aug 2023 19:31:35 UTC (10,053 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.