Generalizing Problem Reduction:

A Logical Analysis *

Drew McDermott

Yale University

Department of Computer Science

Abstract

Froblcm reduction is the name given to the problem-
solving paradigm in which the problem solver manages a
network of "tasks" representing its intentions, repeatedly
reducing tasks to subtasks and coordinating their execution.
This idea needs a lot of generalization for it to be able to
handle a realistic range of problems. Even after the model
of time is made more realistic (to handle continuity and
branching), issues remain regarding what it means to have a
task or a subtask, how a task can succeed or fail, whether a
task is feasible. A profitable way to study these issues is to
attempt to add axioms about tasks to a first-order temporal
logic. The result sheds light on what sorts of
generalizations of task networks are needed.

1. Introduction

Problem solvers like NOAH [Sacerdoti 751,
NASL [McDermott 78), and SIPE [Wilkins 82] do what is
called problem reduction. They work on problems, or
tasks, by retrieving plans from some kind of plan library.
Each task gives rise to a plan, which consists of one or more
subtasks. The subtasks are actions, which, if done in the
appropriate order, will solve the original problem. Each
subtask is either primitive, or becomes a new problem. The
structure of partially ordered tasks is called a procedural
network, or task network. See Figure 1-1

Gft A ¢~ B Sqltb‘b«‘:k

] s

C‘Ec\rﬁ' - pu\kﬁ G\-»-B

A:ESS:M‘

Cleav- R b ks

Figure 1-1: Task Network lor
Blocks-World Problem

This work was supported by the National Science Foundation under
contract MCS-8203080

The subtasks interact in various ways, and may
require reordering. For instance, if one task makes false a
fact that another task requires to be true, it may be
important to make sure that the falsifying task is ordered
so that it occurs when the interaction no longer matters.

This framework is substantially that pioneered by
Sacerdoti and explored by others since. Surprisingly little
progress has been made in pushing it much further. One
reason for this is that most problem solvers have had a
consistently impoverished vocabulary for  expressing
temporal concepts. For instance, it has usually been
assumed that nothing happens unless the problem solver
makes it happen, and that each action the problem solver
performs can be expressed in terms of "addlists and

delotelists," which specify a finite, often context-
independent, set of atomic facts that change in truth value
instantaneously when the action is executed. These

restrictions have historically been associated  with
applications of McCarthy's situation calculus [McCarthy
58], even though nothing in that calculus really requires
them. (The use of "dynamic logic," as in [Rosenschein 81],
freezes these faulty assumptions in an elegant crystalline
form, but makes it harder to go beyond them than
McCarthy's original formulation.)

Another reason for lack of progress is that the
diagram of Figure 1-1 is too seductive. It implies that any
action can be reduced to a network of subactions and
arrows. In fact, this vocabulary for describing plans is quite
weak. Of course, we can augment the vocabulary as much
as we want; the trick is to retain the transparency that
allowed Sacerdoti's NOAH to reason about what it intended
to do.

As an example of the sort of reasoning a problem
solver should be able to do, suppose that it is set the task of
managing a water supply. It can fill a main supply tank by
opening an inlet, up to some level, and must be prepared to
use water from the supply for various purposes. In
particular, the water will be needed for a series of industrial
tasks (cooling things, putting out fires, or whatever). We
can model this as a sequence of two tasks: Open the valve,
and, for each event that requires water, draw down the
required amount from the tank.

Beyond this point, problem solvers have not been able
to perform problem reduction. And yet, it seems a matter
of simple temporal reasoning to foresee how much water
will be available and roughly how much will be needed. If
there is a discrepancy, it should be noticed (by a "critic"),
and task-network revision should ensue.



In [McDcrmott 82], | tried to enlarge the vocabulary
for talking about time and actions, to allow actions like,
"Turn on the water," "Allow the tank to fill," "Avoid
leaving the room," and "Prevent the tub from overflowing."
None of these could be expressed in the older formalism.
This was accomplished by enriching the ontology of the
situation calculus. Situations, now thought of as
instantaneous states of the universe, were assumed to be
packed into continuous sequences. The notion of a "next"
state was abandoned. Even while the problem solver does
nothing, time continues to advance. This allows one to
reason about processes and agents outside the problem
solver, which | shall refer to as "the robot" (since it reasons
about taking actual actions in the real world).

Another important augmentation was to stipulate
that universe states are partially ordered. Time branches
into the future, so two states can both be in the future of

now", and not be comparable; they represent alternative
futures. In general, the outcome of an action is not a single
state as has often been assumed. Since lots of other things
can be happening at the same time, and even simple actions
have unpredictable effects, an action is thought of as
happening over an interval. We write this (Occ s1 s2 (do
Robot A)): from state ,sl to state s2, the robot does action
A. The same action can be done in many different
intervals, all starting in s1. Stated otherwise, many
different states of the world can result from doing a given
action in a given state.

(=« S8, )
(- s 53 Clhivon i dles
(7« 5, 31') /
Latl LU VR ) Y
&8 wot tamgaahic
SL
f J —
3 ¢
! TS

Figure 1-2: lodrterminacy
of Events

This is a promising start, but only attacks half the
problem. We can talk about actions in a more
sophisticated way (and reason, for instance, about tanks
filling up, as in [McDermott 82]). We must now develop
ways of talking about problem-solver intentions as well.

It should be clear that in this paper | am exploring
representational issues by the formal-logical methods
pioneered by McCarthy [McCarthy 58] and Hayes [Hayes
79]. Hard-nosed problem-solving researchers may be
impatient with this. To many of them it must seem a
waste of time to work on anemic logical studies when red-
blooded arms and motors await. Eventually, however, the
ad hoc nature of the problem solvers we build will catch up
with us. We may as well act now to develop temporal
calculi that can support the kinds of reasoning we will need
to build into our autonomous robots.

D. McDermott 303

2. Tasks and Subtasks

We must add to the temporal logic the ability to talk
about tasks and plans as well as simple actions. The basic
notion is, of course, the fact of having the intention to do
an action. We write this as (T 8 (task k A)). (T s p)
means that fact p is true in state s; this is just a variant of
the situation calculus, (task k A) is a particular fact, true
in some states and false in others. It is true if the robot has
the intention of doing A whenever it can. k is a term
denoting this intention. We have axioms like this:

Axiom 1:

{if (T ?s (task 7k ?a})
{= ?a (task-act ?k)))

“livery task has a unpique, uachanging action, denoted
jtask-act task).”

As before, | write logical formulas in a LI1SP-like
syntax. Wre have the usual logical connectives, “and,” “or,"
“if,” and “not.” Variables universally quantified throughout
an cotire formula are indicated by prefiang all of their
oecurrences with “'" . Other quantifiers are indicated by
(forall (-vars-) formula) and (cxists (-vers-} formula)

Axiom 2:

{if (and {T ?s {task Pkl 7a))
(T ?s (tesk 7h2 ?a}))
(= 7kl ?Kk2))

“There is just one task for a given action at a given
time.”

We define (is-task k) to be true just when k& is a task:
Definition 1:

(iff (T ?s (is-task Pk))
{erists (a)
{t ?s (task Tk a)}})

ff {“if and onoly il") is an n-place connective asserting that
iwo or more formulas are equivalent.

A task remains a task for a single umintcrrupted
interval:

Axiom 3;

{(if (and (T ?sl (is-task ?k))
(T ?s2 (is-tesk ?Kk))
{=< 751 782))
{fora!l {s)
{if (< ?s]1 5 7s2)
(T s (is-task PKI)IP)

If a state precedes another, we write this as (< s1 #2). The
symbol =« is used to include the case where they are
identical. Two states are said to be in the same chronicle if



304 D. McDermott

they are comparable (identical or one preceding the other);
this is written (> =« al &2). See Figure 1.2,

At a given time, the problem solver bas a set of tasks
that entircly define its igtentions. For example, the
problem solver might have the following tasks:

{T S0 {task 71
{prog <{unscrew lightbulbl)
(serewin |ightbulb2}
(discard lightbutbl)>)))

(T 50 (task T2 {screwin lightbulb2)})

That is, it is engaged iz \wo things: a three-step plan, and
the task of screwing in a lightbulb. This second task is step
2 of the three-step plan. This coincidence might be an
accident: there might be some other reason for screwing in
lightbulb2. 1f it is not an accident, we use the subtask fact-
predicate to notate this:

(T S0 (subtask T2 Ti1 <2>))

This formula says that T2 is the second action of T1. The
third argument Lo subtask is 3 “path expression,” a tuple
that unambiguously picks out a subpiece of an action.
{Tuples are written using angle brackets; the empty tuple is
denoted by <<>.) This notion relies on ab “abstract
syntax” [McCarthy 62] for each action-description
primitive. For example, prog takes a tuple of steps and
denotes the action of doing one after another. Each
subaction is indicated by a positive integer.  Another
example is (while fact act). [n the action

{while {not (nail-driven))
(repest (prog <(iift hammer)
{drop hammer}>})}

we ran indicate (lift hammer) using the path expression
<act |>>, that is, the 1st step of the prog, which the act
part of the while. The teat part of the while is the action of
testing whether or not the nail is driven. Hence, the path
expression <Ctest > is used for subtasks that do this test:

(T 30 (task K25 (look-at-nail))}
{T s0 (subtask K25 nail-drive-task <test>))

A subtask does not have Lo be derived from a
superiask in this simple way. [In fact, to transcend
triviality, a working program must contain a wechapism
{the "plan [ibrary™ ) that supplies actions to carry out other
actions when needed. I a subtask is derived this way, we
make its path expression < >, So we might have

(T S0 (task 726 (replace Iightbulbl
lightbulb2)))
(¥ S0 {(subtask T27 T26 <»))

I will use the term syntactic subtask for a subtask
with non-< > path expression; that is, for a subtask whose
action is derived from the action of the supertask.

There are jusi three ways something can cease to be a
task: success, failure, or “evaporation.” The last category
summarizes those cases when a task vanishes from the
agenda because it is pointless, due to success or failure of all
its supertasks. Consider the task *Poison Daddy
Warbucks,” which Orpkap Annie might have as a subtask

of "Get Daddy Warbucks's inheritance." The subtask
succeeds if Warbucks is poisoned by Annie; fails if she is
thwarted; and evaporates if Warbucks dies on his own.

We formalize this as follows:

Axiom 4:

{iff (Occ *s 7s' (task-end 7k))
{O0zc ?s ?s’
{beconme
(not (is-task ?%x))))
{or (Oce ?s ?s" [succeed Pk))
{(0ce ?s ?s° (fail Tk))
(0¢e ?s 75’
{evaparate 7k}}))}

In this formula, the event (task-end k) is equated with
k's ceasing to be a task (“becoming not a task”}, which car
happen in one of the three ways mentioned. We can go or
to provide axioms that specifly what bappeos in cach o
these three cases,

Success 15 straightforward: a task succeeds the firm
time its action is done. Evaporation occurs only when the
supertasks of a task go away:

Axiom &:

{if (Dcc 7sl ?s2 (evaporate 7k))
(forall (k'}
(if {enists (s p}
{end (=< ?sl 7s ?s2)
{subtask
k' 7k p)))
{Dcc ?sl ?s?
{task-and k*}))
1y

This axiom is not a biconditonal, because a problem solver

can have tasks with no supertasks (e.g., "Stay alive").

One possible definition of failure is that a task has failed
when its action becomes impossible. Rather than accept
this definition, | opt for providing axioms explaining how
every task of interest fails; more work is needed to see if the
more general definition can be made to work.

3. Feasibility

In McCarthy's situation calculus, a typical deduction
was of the form "Find a sequence of actions that transform
situation SO into a situation in which fact P is true." Such
deductions were done in an environment in which the only
actions that were named were also feasible. That is, the
axioms were set up so that only plans like "Put A on B,
then put C on A" could be generated. A plan like "Play
the horse that's going to win tomorrow" would never come

up.

A significant flaw in this axiom is that it neglects the possibility
that a task goes away because it ceases to be the best way to carry out
its supertasks. Treating this case would require a substantial extension
to the framework of this paper.



Modern problem solvers generate abstract intentions
before concrete plans to carry them out. As their
possibilities widen, it will get increasingly difficult to ensure
that simply finding an action sequence's name will
guarantee that it is feasible.

The task-subtask calculus gives us some hints how to
analyze this important problem. The major idea is to
analyze feasibility thus: An action is feasible if trying it
would cause it to happen. We analyze trying something as
having a task to do it.

The definition of feasibility involves a counterfactual
or subjunctive conditional. (As in, "A was feasible, because
if you had tried it, you would have succeeded.")
Fortunately, the branching time we assumed makes this a
rather easy counterfactual to handle. We simply suppose
that a branch of the universe is taken in which a "test
task" is injected into the robot's intention structure. If the
"test task" would succeed, then the action is feasible.

One modification is needed here. Suppose the robot
has the task, "Stay in this room." Then the action "Take
this tool to the basement" is feasible, but only at the cost
of upsetting the other task. So we introduce the notion of
feasibility relative to a set of boundary tasks, none of which
may be allowed to fail while the test task is performed.

We use the term (reltrytask state action
boundary-task-set) to refer to the attempt to carry out
action starting in state without upsetting any of the tasks
in boundary-task-set. =~ We suppose that the robot has "free
will," and could essay a reltrytask on any action at any
time. See Figure 3-1.

Teq A/’f T A "Ml
(4 (._\\\"l :g} !
: ~ - __‘__“._.,‘;._
DAl T';:‘ <

w— Allevnibve »
Chroaidies

Figure 3-1: 1 Couid Try to Do
Anything, if I Wanted To

reltrytasks play a role like that of "test particles" in
physics: hypothetical entities introduced into a situation
that react to it without disturbing it. To determine if an
action is feasible, we posit that it is tried, and see if we can
deduce that it is successful.

We have to be quite careful about the way this is
done, in order to avoid fallacies like this one: Suppose that
Al and A2 are both feasible, because if either is tried, it
succeeds. Then suppose both are tried simultaneously.
This event qualifies as a try of each separately, so we can
conclude that both will happen, and hence that it is feasible
that both can be done simultaneously. Since Al might be
"leave the room," and A2 might be "Stay in the room," you
see the problem.

D. McDermott 305

Therefore, we want to make the criterion be that an
"isolated reltry" of an action would succeed. An isolated
reltry is one that occurs without any other crazy tasks
popping up, including especially other reltries. In the
example of the previous paragraph, the proofs that Al and
A2 were feasible would depend on what happened when
each was tried in isolation from the other. As desired,
nothing could then be concluded about a situation in which
both were tried at once.

We can't isolate a reltry too much, however, or the
result will be useless; as soon as we put a complex task
network around a task, the isolation condition will no
longer hold, and feasibility will not allow us to conclude
anything.

The following definition appears to do the job: An
isolated reltrytask is one that takes place without any other
new reltrytasks occurring, except subtasks and syntactic
supertasks of the test task. For instance, in a proof that it
is feasible to win the election of 1984, we will posit a
reltrytask to win it. We forbid weird new reltrytasks like
"Streak down Pennsyvania Avenue," but we allow subtasks
like "File for candidate status by January, 1983."

With this definition of isolated task (see [McDermott
83) for the details), we can define feasibility as follows: A is
feasible in state S with respect to boundary tasks KK if an
isolated reltrytask beginning in S would succeed or
evaporate without any element of KK failing.

We can use this definition to prove these theorems
(see [McDermott 83]):

1. If Al is feasible in SO, and A2 is feasible in
every state resulting from doing A/, then (prog
<Al A2>) is feasible in SO.

2. If an event is certain to happen before any
boundary task in a given set fails, then waiting
for it is feasible with respect to those boundary
tasks.

It is interesting that to prove these theorems, it is
necessary to be explicit about how the tasks involved might
fail. For instance, one must state explicitly that:

A task to do (prog <A1 A2>) is accomplished by a
task to do Al followed by a task to do A2
and it can fail only if the current task fails.

Separating tasks out from the actions they call for has
the advantage that one <can talk about Jailing to
accomplish something as well as accomplishing it.

Another important axiom that must be added to the
system is that if an action is feasible, and is a way of
carrying out another action, then the second action is
feasible:



306 D. McDermott

Axiom 0:

(if (and (T ?s (fessible 731 ?kk))
{forall {52)
(if {Dee 7s s2
{do Robot ?sl))

(Oce ?s 52
{do Robot
7a21)) N

{T ?s (fessibla Pa2 ?kk)))}

Io this axiom, the fact of A being feasible with respect to
boundary 1ask set KK is written (feasible 4 K K).

4. An Example
In this section, | will sketch briefly an example

showing the utility of these ideas. This is a chess problem |
heard from John McCarthy.

I will call this state of affairs SO, although you must
remember that this constant refers to an arbitrary snapshot
of a board position that actually lasts until White makes a
move; an uncountable set of other states go by during this
time, during which the chess position doesn't change
(although other things in the world will).

White can win, by the following argument: K can get
to a5, because if k leaves the rectangle with corners c8 and
g7 (an area 1 will call the "cage"), then the pawn at e6 will

sbedafgh

8 _I_I_l.ikl.l_I_ 8
N U T T O B
¥hite to move 6 _I_1_lqlPigl_I_ 6
5 _[_1q!P{_IPIqi_ 5
k = Black king & _I_IPI_I_I_{PI_ 4
K = White king 3 _|_}_I_I_1_1_I_3
q = Black pawn 2 _|_I_F_{Ki_I_I_ 2
P=white pawn 1 {1 | | | || 1

sbcdefgh

Figure 4-1: A Chess Problem

queen. But then K can get to b6, because if k is anywhere
but c¢7, white can move to b6 in one step, and if k is at c7,
white can move to a6, then b6 By similar arguments, K
can get to c6, and then to either d6 or d7; and then the
pawn at e6 can queen.

I will discuss an approach to part of McCarthy's
problem within the framework | have outlined. The part |
will be concerned with is step one, showing that the white
king can get to ab. (The remaining steps are more
straightforward.) The interesting thing about this step is
that the reasoning is "continuous": it talks about the white
king moving toward a5 while the black king moves around
in the "cage," completely neglecting the fact that these
moves occur as interleaved jumps.

The following plan can be shown to be feasible and
allow the robot (playing White) to get his king to a5, or
queen the pawn at e6:

(interrupt (move K a5)
(outside k cage)
(move P/e6 e8))

where the action (interrupt al p a2) is defined thus:
Definition 2: (interrupt al p aS) is executed
whenever one of the following happens:

1. al is executed without p becoming true.

2.p becomes true before al has been
executed, and a2 is then executed

This is the sort of thing that the original task
networks (see Figure 1-1) cannot express, but that human
problem solvers execute as plans all the time.

Fortunately, we can analyze the "interrupt" plan as
giving rise to subtasks. However, the subtasks are not
always the same, or always foreseeable. If p never becomes
true, then there will be just one subtask; if it does become
true, there will be two.

The proof that (interrupt Al P AS) is feasible depends
on the following Lemma:

Lemma 1: In a state SO, if Al is feasible with
respect to boundary tasks KK so long as P
remains false, and if AS is feasible in the first state
in which P becomes true after SO (if any), then
(interrupt Al P AS) is feasible with respect to KK
in SO.

This statement can be proved using Definition 2, but
that is not sufficient. That definition adequately defined
what it means to actually execute (interrupt ...), but did not
specify what it meant to have an intention to execute it.
Since actions can be executed accidentally, the two are
quite different. So we must provide an axiom like this:

Axiom 7: If, over an interval, a problem solver
has a task K to perform (interrupt Al P AS), then
either
1.there is just one subtask K/ to perform
(until P Al), and P stays false; or

2. there are two subtasks, K/ as described,
which succeeds when P becomes true, and
K2, a task that begins as soon as P
becomes true.

Furthermore, at any moment while K is a task, it
fails only if the current subtask fails.

Sce Figure 4-2.

K- {m‘!ff"yfi Aa' PA?-)
Ki:fenbt P AD
Ke: Az

- {(p beiam ¢s
SUSGE broe)

Figure 4-2: Structure of loterrupt Subtasks



In this axiom, | have had to introduce an intermediate
task to perform the action (until P Al). The reason is that
the subtask K11, with action A/, must evaporate if P
becomes true, and therefore its su pert ask must end. Since
the interrupt task itself can't end, we insert the until task,
which succeeds if P becomes true:

Definition 3: (until P A) is executed over any
interval in which A is executed without P
becoming true (before the last instant), or over
any interval in which P becomes true without A
being executed.

The until-task has its own subtask structure (see
Figure 4-2):

Axiom 8: Any task with action (until P A) has
one subtask with action A. The su pert ask fails
only if A fails before P becomes true.

Now we can prove the following theorem:

Theorem 2: (interrupt Al P A2) is feasible
whenever Al is feasible provided P stays false, and
A2 is feasible in the first state after P becomes
true.

Proof: Assume that an isolated reltry of (interrupt A/
P A2) occurs. If P does not become true, then there is
exactly one subtask K/ with action (until P Al), such that
K fails only if KI fails. But, by Axiom 8, there will be a
unique subtask K77 with action AL Because Al is feasible,
A11 will succeed, and hence (Definition 3), K/ will succeed,
and hence K will succeed. The proof for the case where P
does become true is similar. QED

Several further steps are necessary to actually apply
this theorem to the chess problem. Recall that White's
plan is

{interrupt (move K 25)
{outside k cage)
(move F/ef e8))

The basic strategy is of course to show that if k never
leaves the "cage," then (move K a5) is feasible, and that if
it does, then (move P/e6 e8) is feasible. While these are in
some sense obvious, there are some pitfalls in the formal
proof. For instance, how can we be sure that the blocked
pawns never move, or that White (that is, the robot itself)
doesn't move his pawn at e6 prematurely? These are "chess
lemmas" which it is not necessary to prove (or not our job,
anyway), but some care is necessary in stating them. The
second issue especially raises interesting issues about
predicting one's own subtasks. In Section , we had to
restrict the "test task" for feasibility to be isolated; that is,
no extraneous test tasks were allowed at the same time.
We cannot rule out the robot's own genuine tasks so
peremptorily; to prove feasibility, we must prove that no
conflicting subtask will arrive. This is one reason proving
feasibility is so difficult.

D. McDermott 307

5. Conclusions

This paper has sketched an approach to reasoning
about intentions within the framework of the temporal logic
developed in [McDermott 82]. For a fuller treatment,
see [McDermott 83]

Sections and showed the power of this calculus to
illuminate interrelationships among tasks, feasibility, and
possibility. In addition, they showed its flexibility in
allowing us to talk easily of actions beyond the reach of
previous problem solvers.

The same flexibility may carry over to task networks,
allowing them to be generalized without losing their
eflectiveness. The original formalism assumed that a given
task could be reduced to a foreseeable set of subtasks,
linked by suceessor relationships. See Figure I-1. We now
have a more general picture. There are two soris of
sublask relatienship: syntactic and non-syntactic. For
-nstance, “Get A on B" might be reduced to the action

{prog <{paraiiel <(clear A} (clear B)>}
{puton A B)»)

with three obvious subtasks, as shown in Figure 5.1.

(e ~ 8D

Soobik Tk t A

(? .ro‘a‘\ (Pﬂf‘\ll‘l('\ c(t“!{f A){L\ﬂflv b\‘))

{pta 4 RYDD

ST.A*:,LF(: 4 *

SJLD‘}l\Sk €L

Yiaks uas Sz

(clear AD ((._Ilfr.r' ) (pHMﬁB)

Figure b-1: Revised Task Network
Format

This picture is not very different from the previous
one. One difference is that the new picture has no
successor links, replacing them with labels on the syntactic
subtask relationships. The successor-link notation always
tantalized us with its non-generalizable transparency. The
new notation is much more generalizable; any action, like
prog, that can be defined in terms of subactions, can be
used in such a net. For instance, an "interrupt" might have
subtasks labeled <main> and <oops>. We call an
action that is reduced syntactically a macro-action. A
macro action with labeled subtasks replaces the successor
link.

A second difference is that even the syntactic subtasks
are not all foreseeable. This uncertainty is especially
characteristic of macro-actions involving loops, (repeat A
until T) may have zero or more subtasks with action A,
with path expressions <1>, <2>, The number of
subtasks is indefinite, but a problem solver can estimate
how many there are going to be, and apply NOAH-style
methods to their analysis. The new wrinkle is that the
estimates can turn out to be wrong, an inconceivable
possibility for NOAH. It is as yet unknown how to revise
them; the method of [Doyle 79] may be useful.



308 D. McDermott

Finally, a problem solver will want to keep track of
different estimates, corresponding to different sets of
interesting chronicles. For example, a task to do (interrupt
At P A2) may have one or two subtasks, depending on
whether P becomes true or not. If the system doesn't know
whether P will happen or not, it may want to construct two
different task networks, one for each eventuality. This
operation may be desirable for almost any macro-action.

Acknowledgments: The ideas in this paper were
developed in conversations with Robert Moore, Stan
Rosenschein, Frnie Davis, John McCarthy, Stan Letovsky,
and several others.

References

[Doyle 79] Doyle, J.
A truth maintenance system.
Artificial Intelligence 12:231-272, 1979.

[Hayes 79] Hayes, Patrick.
Ontology for Liquids.
1979.

[McCarthy 58] McCarthy, John.
Programs with common sense.
In Proceedings of the Symposium on the
Mechanization of Thought Processes.
National Physiology Laboratory, 1958.
In [Minsky 68], pp. 403-418.

[McCarthy 62] McCarthy, John.
Towards a Mathematical Theory of
Computation.
In Proc. IFIP Congress 1962, pages 21-28.
IFIP, 1962.

[McDermott 78] McDermott, Drew V.
Planning and acting.
Cognitive Science 2(2):71-109, 1978.

[McDermott 82] McDermott, Drew V.
A temporal logic for reasoning about
processes and plans.
Cognitive Science 6:101-155, 1982.

[McDermott 83] McDermott, Drew V.
Reasoning about Plans.
1983.
To appear in Hobbs (ed.) Formal Theories
of the Common-Sense World.

[Minsky 68] Minsky, M.
Semantic Information Processing.
MIT Press, Cambridge, Mass, 1968.

[Rosenschein 81] Rosenschein, Stanley J.
Plan Synthesis: A Logical Perspective.
In Proc. IJCAI 1981, pages 331-337.
IJCAI, 1981.

[Sacerdoti 75] Sacerdoti, E.D.
A structure for plans and behavior.
Technical Report 109, SRI Artificial
Intelligence Center, 1975.

Wilkins, David.

Domain Independent Planning:
Representation and Plan Generation.

1982.

SRI, 1982. Submitted to Artificial
Intelligence.

[Wilkins 82]



