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Abstract 
Froblcm reduction is the name given to the problem-

solving paradigm in which the problem solver manages a 
network of "tasks" representing its intentions, repeatedly 
reducing tasks to subtasks and coordinating their execution. 
This idea needs a lot of generalization for it to be able to 
handle a realistic range of problems. Even after the model 
of t ime is made more realistic ( to handle cont inui ty and 
branching), issues remain regarding what it means to have a 
task or a subtask, how a task can succeed or fa i l , whether a 
task is feasible. A prof i table way to study these issues is to 
attempt to add axioms about tasks to a first-order temporal 
logic. The result sheds l ight on what sorts of 
generalizations of task networks are needed. 

1. In t roduct ion 
Problem solvers like N O A H [Sacerdoti 75], 

NASL [McDermott 78), and SIPE [Wilkins 82] do what is 
called problem reduction. They work on problems, or 
tasks, by retrieving plans from some kind of plan library. 
Each task gives rise to a plan, which consists of one or more 
subtasks. The subtasks are actions, which, if done in the 
appropriate order, wi l l solve the original problem. Each 
subtask is either primitive, or becomes a new problem. The 
structure of part ial ly ordered tasks is called a procedural 
network, or task network. See Figure 1-1 
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The subtasks interact in various ways, and may 
require reordering. For instance, if one task makes false a 
fact that another task requires to be true, it may be 
impor tant to make sure that the falsifying task is ordered 
so that it occurs when the interaction no longer matters. 

This framework is substantial ly that pioneered by 
Sacerdoti and explored by others since. Surprisingly l i t t le 
progress has been made in pushing it much further. One 
reason for this is that most problem solvers have had a 
consistently impoverished vocabulary for expressing 
temporal concepts. For instance, it has usually been 
assumed that nothing happens unless the problem solver 
makes it happen, and that each action the problem solver 
performs can be expressed in terms of "addlists and 
delotelists," which specify a f in i te, often context-
independent, set of atomic facts that change in t ru th value 
instantaneously when the action is executed. These 
restrictions have historically been associated w i th 
applications of McCarthy's situation calculus [McCarthy 
.58], even though nothing in that calculus really requires 
them. (The use of "dynamic logic," as in [Rosenschein 81], 
freezes these faul ty assumptions in an elegant crystalline 
form, but makes it harder to go beyond them than 
McCarthy 's original formulat ion.) 

Another reason for lack of progress is that the 
diagram of Figure 1-1 is too seductive. It implies that any 
action can be reduced to a network of subactions and 
arrows. In fact, this vocabulary for describing plans is quite 
weak. Of course, we can augment the vocabulary as much 
as we want; the t r ick is to retain the transparency that 
allowed Sacerdoti's N O A H to reason about what it intended 
to do. 

As an example of the sort of reasoning a problem 
solver should be able to do, suppose that it is set the task of 
managing a water supply. It can f i l l a main supply tank by 
opening an inlet, up to some level, and must be prepared to 
use water from the supply for various purposes. In 
part icular, the water wi l l be needed for a series of industrial 
tasks (cooling things, pu t t ing out f ires, or whatever). We 
can model this as a sequence of two tasks: Open the valve, 
and, for each event tha t requires water, draw down the 
required amount f rom the tank. 

Beyond this point, problem solvers have not been able 
to perform problem reduction. And yet, it seems a matter 
of simple temporal reasoning to foresee how much water 
wi l l be available and roughly how much wi l l be needed. If 
there is a discrepancy, it should be noticed (by a "cr i t ic" ) , 
and task-network revision should ensue. 
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In [McDcrmott 82], I t r ied to enlarge the vocabulary 
for ta lk ing about t ime and actions, to allow actions l ike, 
"Turn on the water," "Al low the tank to f i l l , " "Avoid 
leaving the room," and "Prevent the tub f rom overf lowing." 
None of these could be expressed in the older formal ism. 
This was accomplished by enriching the ontology of the 
si tuat ion calculus. Situations, now thought of as 
instantaneous states of the universe, were assumed to be 
packed into continuous sequences. The notion of a "next" 
state was abandoned. Even while the problem solver does 
nothing, t ime continues to advance. This allows one to 
reason about processes and agents outside the problem 
solver, which I shall refer to as "the robot" (since it reasons 
about tak ing actual actions in the real world). 

Another impor tant augmentat ion was to stipulate 
that universe states are part ial ly ordered. T ime branches 
into the future, so two states can both be in the future of 
"now'', and not be comparable; they represent alternative 
futures. In general, the outcome of an action is not a single 
state as has often been assumed. Since lots of other things 
can be happening at the same t ime, and even simple actions 
have unpredictable effects, an action is thought of as 
happening over an interval. We wri te this (Occ s1 s2 (do 
Robot A)): from state ,sl to state s2, the robot does action 
A. The same action can be done in many different 
intervals, all start ing in s1. Stated otherwise, many 
different states of the world can result from doing a given 
action in a given state. 

This is a promising start, but only attacks half the 
problem. We can talk about actions in a more 
sophisticated way (and reason, for instance, about tanks 
f i l l ing up, as in [McDermott 82]). We must now develop 
ways of ta lk ing about problem-solver intentions as well . 

It should be clear that in this paper I am exploring 
representational issues by the formal-logical methods 
pioneered by McCar thy [McCarthy 58] and Hayes [Hayes 
79]. Hard-nosed problem-solving researchers may be 
impat ient w i th this. To many of them it must seem a 
waste of t ime to work on anemic logical studies when red-
blooded arms and motors await. Eventual ly, however, the 
ad hoc nature of the problem solvers we bui ld wi l l catch up 
w i th us. We may as well act now to develop temporal 
calculi tha t can support the kinds of reasoning we wi l l need 
to bui ld into our autonomous robots. 

2 . T a s k s and Sub tasks 
We must add to the temporal logic the abi l i ty to talk 

about tasks and plans as well as simple actions. The basic 
notion is, of course, the fact of having the intent ion to do 
an action. We write this as (T 8 (task k A)). (T s p) 
means that fact p is true in state s; this is just a var iant of 
the si tuat ion calculus, (task k A) is a part icular fact, true 
in some states and false in others. It is true if the robot has 
the intent ion of doing A whenever it can. k is a term 
denoting this intent ion. We have axioms like this: 
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of "Get Daddy Warbucks's inheritance." The subtask 
succeeds if Warbucks is poisoned by Annie; fails if she is 
thwar ted; and evaporates if Warbucks dies on his own. 

We formalize this as follows: 

This axiom is not a biconditonal, because a problem solver 
can have tasks w i th no supertasks (e.g., "Stay al ive"). 

One possible def in i t ion of failure is that a task has failed 
when its action becomes impossible. Rather than accept 
this def in i t ion, I opt for providing axioms explaining how 
every task of interest fails; more work is needed to see if the 
more general def ini t ion can be made to work. 

3. Feasibi l i ty 
In McCarthy 's si tuat ion calculus, a typical deduction 

was of the form "F ind a sequence of actions that transform 
situat ion SO into a si tuat ion in which fact P is t rue." Such 
deductions were done in an environment in which the only 
actions that were named were also feasible. T h a t is, the 
axioms were set up so that only plans like "Put A on B, 
then put C on A" could be generated. A plan l ike "Play 
the horse that 's going to win tomorrow" would never come 
up. 

A significant flaw in this axiom is that it neglects the possibility 
that a task goes away because it ceases to be the best way to carry out 
its supertasks. Treating this case would require a substantial extension 
to the framework of this paper. 
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Modern problem solvers generate abstract intentions 
before concrete plans to carry them out. As their 
possibilities widen, it wi l l get increasingly di f f icul t to ensure 
that simply finding an action sequence's name wi l l 
guarantee that it is feasible. 

The task-subtask calculus gives us some hints how to 
analyze this important problem. The major idea is to 
analyze feasibil ity thus: An action is feasible if t ry ing it 
would cause it to happen. We analyze t ry ing something as 
having a task to do i t . 

The def in i t ion of feasibility involves a counterfactual 
or subjunctive condit ional. (As in , ''A was feasible, because 
if you had tr ied i t , you would have succeeded.") 
Fortunately, the branching t ime we assumed makes this a 
rather easy counterfactual to handle. We simply suppose 
that a branch of the universe is taken in which a "test 
task" is injected into the robot's intent ion structure. If the 
''test task" would succeed, then the action is feasible. 

One modif icat ion is needed here. Suppose the robot 
has the task, "Stay in this room." Then the action "Take 
this tool to the basement" is feasible, but only at the cost 
of upsetting the other task. So we introduce the notion of 
feasibil ity relative to a set of boundary tasks, none of which 
may be allowed to fai l while the test task is performed. 

We use the term (reltrytask state action 
boundary-task-set) to refer to the at tempt to carry out 
action start ing in state w i thout upsetting any of the tasks 
in boundary-task-set. We suppose that the robot has "free 
wi l l , " and could essay a reltrytask on any action at any 
t ime. See Figure 3-1 . 

Therefore, we want to make the cri ter ion be that an 
"isolated rel try" of an action would succeed. An isolated 
reltry is one that occurs w i thout any other crazy tasks 
popping up, including especially other reltries. In the 
example of the previous paragraph, the proofs that Al and 
A2 were feasible would depend on what happened when 
each was tr ied in isolation from the other. As desired, 
nothing could then be concluded about a si tuation in which 
both were tr ied at once. 

We can't isolate a reltry too much, however, or the 
result wi l l be useless; as soon as we put a complex task 
network around a task, the isolation condit ion wi l l no 
longer hold, and feasibil ity wi l l not allow us to conclude 
anything. 

The fol lowing def ini t ion appears to do the job : An 
isolated reltrytask is one that takes place wi thout any other 
new reltrytasks occurring, except subtasks and syntactic 
supertasks of the test task. For instance, in a proof that it 
is feasible to win the election of 1984, we wi l l posit a 
reltrytask to win i t . We forbid weird new reltrytasks like 
"Streak down Pennsyvania Avenue," but we allow subtasks 
like "File for candidate status by January, 1983." 

W i t h this defini t ion of isolated task (see [McDermott 
83) for the details), we can define feasibility as follows: A is 
feasible in state S w i th respect to boundary tasks KK if an 
isolated reltrytask beginning in S would succeed or 
evaporate wi thout any element of KK fai l ing. 

We can use this def ini t ion to prove these theorems 
(see [McDermott 83]): 

1. If Al is feasible in SO, and A2 is feasible in 
every state resulting from doing Al, then (prog 
<Al A2>) is feasible in SO. 

2. If an event is certain to happen before any 
boundary task in a given set fails, then wai t ing 
for it is feasible w i th respect to those boundary 
tasks. 

It is interesting that to prove these theorems, it is 
necessary to be explicit about how the tasks involved might 
fa i l . For instance, one must state expl ici t ly tha t : 

A task to do (prog <A1 A2>) is accomplished by a 
task to do Al f o l l owed by a task to do A2, 
and i t can f a i l on ly i f the c u r r e n t task f a i l s . 

Separating tasks out f rom the actions they call for has 
the advantage that one can ta lk about Jailing to 
accomplish something as well as accomplishing i t . 

Another impor tant axiom tha t must be added to the 
system is that if an action is feasible, and is a way of 
carrying out another act ion, then the second action is 
feasible: 

reltrytasks play a role like tha t of "test particles" in 
physics: hypothetical entities introduced into a si tuation 
that react to i t w i thout disturbing i t . To determine i f an 
action is feasible, we posit that it is t r ied, and see if we can 
deduce that it is successful. 

We have to be quite careful about the way this is 
done, in order to avoid fallacies like this one: Suppose that 
Al and A2 are both feasible, because if either is t r ied, it 
succeeds. Then suppose both are t r ied simultaneously. 
This event qualifies as a t ry of each separately, so we can 
conclude tha t both wi l l happen, and hence that it is feasible 
tha t both can be done simultaneously. Since Al might be 
"leave the room," and A2 might be "Stay in the room," you 
see the problem. 
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4 . A n E x a m p l e 
In this section, I wi l l sketch briefly an example 

showing the ut i l i ty of these ideas. This is a chess problem I 
heard from John McCarthy. 

I wi l l call this state of affairs SO, although you must 
remember that this constant refers to an arbi trary snapshot 
of a board position that actually lasts unt i l Whi te makes a 
move; an uncountable set of other states go by dur ing this 
t ime, dur ing which the chess position doesn't change 
(al though other things in the world wi l l ) . 

Whi te can win , by the fol lowing argument: K can get 
to a5, because if k leaves the rectangle w i th corners c8 and 
g7 (an area 1 wi l l call the "cage"), then the pawn at e6 wi l l 

queen. But then K can get to b6, because if k is anywhere 
but c7, white can move to b6 in one step, and if k is at c7, 
white can move to a6, then b6 By similar arguments, K 
can get to c6, and then to either d6 or d7; and then the 
pawn at e6 can queen. 

I wi l l discuss an approach to part of McCarthy 's 
problem wi th in the framework I have out l ined. The part I 
w i l l be concerned wi th is step one, showing that the white 
k ing can get to a5. (The remaining steps are more 
straightforward.) The interesting th ing about this step is 
tha t the reasoning is "continuous": it talks about the white 
k ing moving toward a5 while the black king moves around 
in the "cage," completely neglecting the fact that these 
moves occur as interleaved jumps. 

The fo l lowing plan can be shown to be feasible and 
allow the robot (playing Whi te) to get his k ing to a5, or 
queen the pawn at e6: 

( i n t e r r u p t (move K a5) 
(ou ts ide k cage) 
(move P/e6 e8)) 

where the action ( interrupt al p a2) is defined thus: 
D e f i n i t i o n 2: ( interrupt al p aS) is executed 
whenever one of the fol lowing happens: 

1. al is executed wi thout p becoming true. 

2. p becomes true before al has been 
executed, and a2 is then executed 

This is the sort of th ing that the original task 
networks (see Figure 1-1) cannot express, but that human 
problem solvers execute as plans all the t ime. 

Fortunately, we can analyze the " in terrupt" plan as 
giving rise to subtasks. However, the subtasks are not 
always the same, or always foreseeable. If p never becomes 
true, then there wil l be just one subtask; if it does become 
true, there wi l l be two. 

The proof that ( interrupt Al P AS) is feasible depends 
on the fol lowing Lemma: 

L e m m a 1: In a state SO, if Al is feasible wi th 
respect to boundary tasks KK so long as P 
remains false, and if AS is feasible in the first state 
in which P becomes true after SO ( i f any), then 
( interrupt Al P AS) is feasible w i th respect to KK 
in SO. 

This statement can be proved using Definit ion 2, but 
that is not sufficient. Tha t def ini t ion adequately defined 
what it means to actually execute ( interrupt ...), but did not 
specify what it meant to have an intention to execute it. 
Since actions can be executed accidentally, the two are 
quite different. So we must provide an axiom like this: 

A x i o m 7: If, over an interval , a problem solver 
has a task K to perform ( interrupt Al P AS), then 
either 

1. there is just one subtask Kl to perform 
(unt i l P Al), and P stays false; or 

2. there are two subtasks, Kl as described, 
which succeeds when P becomes true, and 
K2, a task that begins as soon as P 
becomes true. 

Furthermore, at any moment while K is a task, it 
fails only if the current subtask fails. 
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In this axiom, I have had to introduce an intermediate 
task to perform the action (unt i l P Al). The reason is tha t 
the subtask K11, w i th action Al, must evaporate if P 
becomes true, and therefore its su pert ask must end. Since 
the interrupt task itself can't end, we insert the unt i l task, 
which succeeds if P becomes true: 

D e f i n i t i o n 3: (unt i l P A) is executed over any 
interval in which A is executed wi thout P 
becoming true (before the last instant), or over 
any interval in which P becomes true w i thout A 
being executed. 

The unti l - task has its own subtask structure (see 
Figure 4-2): 

A x i o m 8: Any task w i th action (unt i l P A) has 
one subtask w i th action A. The su pert ask fails 
only if A fails before P becomes true. 

Now we can prove the fol lowing theorem: 

T h e o r e m 2: ( in terrupt Al P A2) is feasible 
whenever Al is feasible provided P stays false, and 
A2 is feasible in the f irst state after P becomes 
true. 

Proof: Assume that an isolated reltry of ( interrupt Al 
P A2) occurs. If P does not become true, then there is 
exactly one subtask Kl w i th action (unt i l P Al), such that 
K fails only if Kl fails. But , by Ax iom 8, there wi l l be a 
unique subtask K11 w i th action Al. Because Al is feasible, 
A 1 1 wi l l succeed, and hence (Def ini t ion 3), Kl wi l l succeed, 
and hence K wi l l succeed. The proof for the case where P 
does become true is similar. QED 

Several further steps are necessary to actually apply 
this theorem to the chess problem. Recall tha t White 's 
plan is 

The basic strategy is of course to show that if k never 
leaves the "cage," then (move K a5) is feasible, and that if 
it does, then (move P/e6 e8) is feasible. Whi le these are in 
some sense obvious, there are some pitfal ls in the formal 
proof. For instance, how can we be sure that the blocked 
pawns never move, or that Whi te ( that is, the robot itself) 
doesn't move his pawn at e6 prematurely? These are "chess 
lemmas" which it is not necessary to prove (or not our job , 
anyway), but some care is necessary in stat ing them. The 
second issue especially raises interesting issues about 
predict ing one's own subtasks. In Section , we had to 
restrict the "test task" for feasibil ity to be isolated; tha t is, 
no extraneous test tasks were allowed at the same t ime. 
We cannot rule out the robot's own genuine tasks so 
peremptor i ly; to prove feasibi l i ty, we must prove tha t no 
conf l ict ing subtask wi l l arrive. This is one reason proving 
feasibi l i ty is so d i f f icu l t . 

5 . C o n c l u s i o n s 
This paper has sketched an approach to reasoning 

about intentions wi th in the framework of the temporal logic 
developed in [McDermott 82]. For a ful ler t reatment, 
see [McDermott 83] 

Sections and showed the power of this calculus to 
i l luminate interrelationships among tasks, feasibil i ty, and 
possibil ity. In addi t ion, they showed its f lexibi l i ty in 
al lowing us to ta lk easily of actions beyond the reach of 
previous problem solvers. 

This picture is not very different f rom the previous 
one. One difference is that the new picture has no 
successor l inks, replacing them wi th labels on the syntactic 
subtask relationships. The successor-link notat ion always 
tantal ized us w i th its non-generalizable transparency. The 
new notat ion is much more generalizable; any act ion, l ike 
prog, tha t can be defined in terms of subactions, can be 
used in such a net. For instance, an " in ter rupt" might have 
subtasks labeled < m a i n > and < o o p s > . We call an 
action tha t is reduced syntactically a macro-action. A 
macro action w i th labeled subtasks replaces the successor 
l ink. 

A second difference is tha t even the syntactic subtasks 
are not all foreseeable. This uncertainty is especially 
characteristic of macro-actions involv ing loops, (repeat A 
unt i l T) may have zero or more subtasks w i th action A, 
wi th path expressions < 1 > , < 2 > , ... . The number o f 
subtasks is indefini te, but a problem solver can estimate 
how many there are going to be, and apply NOAH-style 
methods to their analysis. The new wrinkle is that the 
estimates can t u rn out to be wrong, an inconceivable 
possibility for N O A H . It is as yet unknown how to revise 
them; the method of [Doyle 79] may be useful. 
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Final ly, a problem solver wi l l want to keep track of 
d i f fe ren t estimates, corresponding to different sets of 
interesting chronicles. For example, a task to do ( interrupt 
At P A2) may have one or two subtasks, depending on 
whether P becomes true or not. If the system doesn't know 
whether P wi l l happen or not, it may want to construct two 
different task networks, one for each eventuali ty. This 
operation may be desirable for almost any macro-action. 

Acknowledgments: The ideas in this paper were 
developed in conversations w i th Robert Moore, Stan 
Rosenschein, Frnie Davis, John McCarthy, Stan Letovsky, 
and several others. 
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