Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Mar 2022]
Title:GOSS: Towards Generalized Open-set Semantic Segmentation
View PDFAbstract:In this paper, we present and study a new image segmentation task, called Generalized Open-set Semantic Segmentation (GOSS). Previously, with the well-known open-set semantic segmentation (OSS), the intelligent agent only detects the unknown regions without further processing, limiting their perception of the environment. It stands to reason that a further analysis of the detected unknown pixels would be beneficial. Therefore, we propose GOSS, which unifies the abilities of two well-defined segmentation tasks, OSS and generic segmentation (GS), in a holistic way. Specifically, GOSS classifies pixels as belonging to known classes, and clusters (or groups) of pixels of unknown class are labelled as such. To evaluate this new expanded task, we further propose a metric which balances the pixel classification and clustering aspects. Moreover, we build benchmark tests on top of existing datasets and propose a simple neural architecture as a baseline, which jointly predicts pixel classification and clustering under open-set settings. Our experiments on multiple benchmarks demonstrate the effectiveness of our baseline. We believe our new GOSS task can produce an expressive image understanding for future research. Code will be made available.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.