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Abstract

Buffering has all along been an important
strategy for exploiting the cost/performance
ratio of disk versus random-access memory.
The buffering of disk pages belonging to a
database has been well-studied, but literature
that deals specifically with index buffering is
scarce. This is surprising given the signifi-
cance of indexes (especially B+-tree like in-
dexes) in modern DBMSs. In this paper, we
describe a dual buffering scheme for indexes,
called GHOST, in which part of the buffer is
used to maintain popularly used “paths” of
the B+-tree index, while the remainder 1s de-
voted to maintaining a Splay-tree with point-
ers to leaf pages containing frequently used
leaf pages. This scheme allows us to main-
tain pointers to leaf nodes long after the paths
leading to the leaf nodes have been replaced,
thus maintaining “ghost” paths to the nodes.
In addition to describing the search and main-
tenance operations for the GHOST buffering
scheme, we also conduct a series of experi-
ments in which it is shown that GHOST out-
performs the best existing schemes (ILRU and
OLRU) by impressive margins for almost all
pragmatic query workloads.

1 Introduction

Despite the fact that modern computer systems are
equipped with an abundance of main memory, the
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latter remains a scarce resource with increasingly so-
phisticated (and large) software and the rapid buildup
of huge data sets. In particular, although database
servers are now routinely equipped with between
512 MB and 2 GB of main memory, it is not uncommon
to find databases consisting of terabytes of data. More-
over, any available memory will have to be fragmented
among large numbers of concurrent transactions. For
example, at the National University of Singapore, the
university database is managed by Oracle 8.05 running
on a powerful 4-way V2200 HP machine with 2 GB of
memory. Applications range from student result man-
agement system, human resource to fund management
systems. It has a user base of 26,000 and a database
size of about 100 GB. Many of the relations are in-
dexed on attributes that are frequently queried. De-
spite the powerful configuration and proper database
tuning, due to the high number of applications and
stored procedures, we have observed that at peak, the
memory resources and processors are fully utilized. In
short, a good buffer management system that is ef-
fective in exploiting differential access speed of main
memory (versus disk) remains a key determinant of
system performance and throughput.

In the past, a variety of different buffering schemes
for pages of a database have been proposed. Early
works were adaptations from research in operating sys-
tems [7], such as the LRU and its variants [10], the Hot
Set model [13], and other mutations (e.g. DBMIN [5]).
Interestingly, very few work have been reported on the
buffering of database indexes themselves. To the best
of our knowledge, only three such schemes have been
reported in the literature: the ILRU and OLRU [12],

and the extensible buffer mechanism described in [4].

In this paper, we studied the management of buffers
for large B+-tree-like indexes. Besides being the most
widely used indexing scheme, the B+-tree index [6]
has also been shown in recent works to provide supe-
rior performance in managing high dimensional data
[3, 11]. Our goal is to further improve the performance
by minimizing the number of page faults for fetching
index pages from large B+-trees. The novelty of our
proposal lies in the use of a dual-buffering scheme;
specifically, one part of the buffer space 1s used as an



ILRU buffer that allows popular paths of the B+-tree
to remain in main memory, while the rest is devoted to
caching pointers to leaf pages, and are organized into a
Splay-tree [14]. This allows previously popular paths
of the B+-tree to be evicted from the ILRU buffer,
while keeping the pointers to leaf nodes directly, mak-
ing it appear that “ghost” paths now exist in the main
memory buffer.!

We also studied the sensitivity of the buffering ap-
proach to the proportion of memory devoted to the
ILRU buffer (and as a consequence, those available to
the Splay tree) and the efficacy of GHOST under dif-
ferent levels of data skew. It is shown that GHOST
outperforms existing index buffering schemes by im-
pressive margins under most circumstances, regard-
less of the amount of memory available and different
amount of data skew.

The remainder of this paper is organized as follows.
In section 2, we introduce the case for buffer manage-
ment of indexes and describe briefly the various tech-
niques proposed in the literature. This is followed by
a description of the splay tree structure in section 3,
and the GHOST strategy for buffer management in
section 4. In section 5, we present results of the exper-
imental studies using the proposed buffering scheme
under different retrieval patterns, and compare these
results to existing buffering strategies. Finally, we
summarize our contributions in the last section and
describe some work in the pipeline.

2 Buffer Management for Indexes

The management of buffers for indexes has received
considerably less attention compared to the problem
of buffer management in general. Throughout this
paper, we assume that a B+4-tree index [2] is used.
Nonetheless, the analysis and experimental results in
this paper can be easily extended to most other hier-
archical index structures.

To the best of our knowledge, only two distinct set
of works have been reported in the literature [4, 12];
specifically, the replacement policies ILRU (Inverse
LRU) and OLRU (Optimal LRU) proposed in [12],
and a more generic priority-based approach proposed
in [4]. These approaches are described briefly in the
next three subsections.

2.1 Inverse LRU (ILRU)

The ILRU replacement policy is formulated with the
following observation in mind. Access to index pages
involves the traversal of a tree from the root to the
leaf pages. Suppose p is the parent page of the set of
of children denoted by ¢. To access a child ¢; (€ ¢),
p must be first accessed. Hence, the sum of accesses
to children in ¢ cannot exceed the total number of

IThe acronym for the proposed buffering strategy is also a
pun on the authors’ names.
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accesses to p. Consequently, it is always suboptimal
to replace p, if any of the ¢; € ¢ are still in the buffer.

Let B be the number of buffers allocated for sup-
porting the index, and suppose L is the height of the
B+-tree (i.e., the number of traversals needed to reach
a leaf node from the root, plus one). It should be clear
that whenever B < L, the classic LRU policy will per-
form poorly, since the pages which are nearest to the
root will be swapped out first.

The Tnverse LRU (ILRU) policy modifies the LRU
policy by simply reversing the order in which pages
are scheduled for replacement. Hence, when a page
p at level 7 (the root being level 0) is accessed, it is
not placed at the top of the LRU stack but at its i-th
position: thus, the root will be placed at position 0
(the top of the stack). Index pages being accessed are
always appended. In the exceptional situation when
the stack has B < L buffers, the currently referenced
page at level 7 ( > B) is placed at the B-th position.
This means that whenever no more buffers are avail-
able, the page at position B of the LRU-stack will be
replaced. This strategy guarantees that top level pages
of a B+-tree always have higher priority compared to
those further from the root. As an example, a buffer
with B > 2 is sufficient to keep the root in the buffer
at all times.

2.2 Optimal LRU (OLRU)
In the case of the Optimal LRU (OLRU) strategy, the

index pages are logically partitioned into L indepen-
dent regions, each managed by a local LRU stack. The
number of buffers allocated to region 7 is given by T;
and is estimated by Yao’s function [15]. There are two
distinct cases that need to be considered. If B > T'(=

Zle T;) then all of the regions can be given a full al-
location. If however B < T, then there exists j < L
such that Zf;ll T, < B <Y 1_,T;. In which case, we
allocate T; buffers to regions 7; (¢ = 1,2,...,7 — 1)
and the remainder B’ = (B — 3272/ T;) — 1 to region
j- In other words, three types of regions may exist in
the buffer for a given buffer size: non-deficient regions
where each 1s allocated the full set of T; buffers; coa-
lesced regions which share a single unallocated buffer;
and finally a single deficient region that is allocated
B’ buffers.

Whenever an index page at level 7 is accessed, it
is kept in region i of the buffer (or, in the case of
coalesced regions, in the single free buffer). Buffers
in a given region are managed using the LRU pol-
icy (though a random replacement policy may work
equally well). Under the assumption that leaf pages
are accessed with the same probability, this allocation
is optimal because available buffers are allocated to
the index pages according to their reference frequency.
Sacco [12] has also shown that similar results can be
obtained even if the access probability is skewed (such
as when a Zipf distribution is used).



2.3 Priority-Based Index Buffering

In the priority-based buffering scheme proposed in [4],
each page in the buffer is assigned a priority value
which may be dynamically modified to reflect its “re-
placement potential” relative to other buffered pages
brought into memory. Pages present in the buffer is
denoted as either useful or useless: a buffer page is
considered useful if it is to be re-referenced again (in
the context of the same query) and useless otherwise.
This information is known because of the predictabil-
ity of the reference pattern. Within each set, the pages
can be further assigned priority values based on the
level number of the page with reference to the anchor
page (the index page furthest from the root that con-
tains the entire range of leaf pages required by the
query). More specifically, priority values are assigned
as follows:

o useful pages are assigned higher priority than use-
less pages;

e among useless pages, higher priority is assigned
to pages nearer to the root (since these are more
likely to be accessed in subsequent queries);

e among useful pages, higher priority i1s given to
more recently used pages since they will be
re-referenced sooner because of the depth-first
traversal reference pattern.

Notice that this priority scheme is dynamic since the
priority of a page may decrease as the B+-tree is tra-
versed; for example, a useful page (descending from
the anchor page) becomes useless after the entire sub-
tree rooted at that page has been traversed.

Under the prescribed priority scheme, the buffer
page with the least priority is selected as the victim
whenever the buffer runs out of room. This replace-
ment strategy can be understood as a hybrid scheme
representing a combination of the LRU and MRU re-
placement policies. Specifically, useful pages are man-
aged in an LRU manner (favoring pages nearer to the
leaf), and useful pages are managed using a MRU pol-
icy (favoring pages nearer to the root).

2.4 Discussion

The performance of ILRU and OLRU are compared
in a preliminary study reported in [12]. Both schemes
are shown to be better than the classic LRU.

We observed that in the case of B+4-trees, the pri-
ority scheme in [4] does not present a distinct contri-
bution for the following reasons. For key-probes, it
degenerates into ILRU since all pages are useless. In
the case of range queries, there 1s no occasion for the
index structure to be backtracked (to the anchor node)
since adjacent leaf pages are linked. (Note that this is
only true for this context; in a more generic tree-based
indexed, such as the R-tree [9], the priority scheme will
actually behave differently from ILRU.)
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3 The Splay-Tree

The Splay tree is a self-adjusting binary search tree in-
troduced in the mid 1980s [14]. Tt is shown in [14] that
although the operations (e.g., search, insert, delete)
performed on a Splay tree is not necessarily individ-
ually efficient, they are guaranteed to be so over a
sequence of operations. In other words, it has been
shown that the amortized cost of a sequence of oper-
ations of a Splay tree is bounded by O(log n). This
behavior is achieved by a splaying operation which al-
lows the Splay tree to be restructured after each op-
eration, so that subsequent operations can be accom-
plished more cheaply.

The splaying operation consists of a sequence of ro-
tations in such a way that the node containing the key
(or a node which would be a neighbor of this key if the
latter is not in the tree) ends up being the root of the
splay tree. In performing the Splay operation, three
cases can be distinguished depending on the node R
being accessed and its parent () and grandfather P (if

any).
case 1: Node R’s parent is the root.

case 2: Homogeneous configuration. Node R is the
left child of @ which in turn is the left child of P;
or both are right children.

case 3: Heterogeneous configuration. Node R is the
right child of parent ) which in turn is the left
child of P, or vice versa.

Each configuration presents different opportunities
for elevating node R to the root. Figure 1 shows the
animated rotation associated with each configuration.
The abstracted algorithm is given in Figure 2. One
readily observed property of the Splay tree is that the
most recently observed key (being searched on or in-
serted) will float to the top of the tree, while the re-
mainder percolates down to lower parts of the tree.
Because of this property, the search cost for the same
node is greatly reduced.

4 The GHOST
Scheme

Index Buffering

In the classical management of buffers for indexes, it
is common to adopt index pages (which includes both
internal and leaf pages) as a unit for buffering: i.e., an
index page is either in the buffer, or it is not. In this
section, we describe a dual-buffering strategy which
consists of two different data structures

e a conventional index buffering scheme (in our
case, the ILRU scheme) that allows recently used
paths in the index to be cached; and

e an appropriate in-memory data structure (in our
case, the Splay tree) that allows pointers to leaf
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Figure 1: Animation of rotations for different Splay cases.

nodes to be stored (accompanied with their re-
spective key ranges).

Notice that in the second case, the leaf node point-
ers may remain in the main memory even long after
the paths have been evicted. This creates the impres-
sion that a “ghost” path to the leaf node exists and
hence the name of the index buffering scheme.

The proposed dual buffering scheme is motivated
by the following observations. As the memory resi-
dent data structure stores pointers to leaf nodes, given
a fixed amount of memory, it can store more point-
ers than that under a conventional scheme that stores
paths. By retaining as many pointers to frequently
accessed leaf nodes as possible, we hope to reduce the
access cost to these nodes to only a single page fault.
For the conventional scheme, because of the need to
store paths, the number of index nodes that can be
retained in the main memory is severely limited. On
the other hand, purely storing pointers to leaf nodes
is not expected to perform well also. This is because
in the event of a cache miss, the entirety of the path
(from root to the leaf node) has to be accessed. The
conventional scheme’s ability to retain the path can
avoid this. Thus, a dual buffering scheme is expected
to be superior. Our experimental study in section 5
confirms these observations.

4.1 Key Data-structures in GHOST
There are three key data structures in GHOST:
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e a B+-tree index;
e a ILRU buffer; and
e a mutated Splay-tree.

The B+-tree 1s a hierarchical index constructed over
the data. It is normally too large to be stored in
the main memory and relies on some buffering scheme
to keep the commonly traversed index records in the
cache. The TLRU scheme is chosen because it gives
greater priority to the pages of the B+-tree nearer to
the root. Furthermore, it is simpler and is reported to
yield better performance than schemes that are known.

The ILRU buffer operates exactly as described in
[12]. By caching popular (frequently and least recently
used) paths in the tree, the ILRU scheme provides
a method for caching the paths leading to the data
nodes.

Finally, we adopted the Splay tree as our in-memory
data structure. The Splay tree used by GHOST differs
from the one described earlier in two aspects. First,
despite the (relatively) large amount of main memory
available, the latter resource is finite. This requires an
eviction policy: in our implementation, a leaf node 1s
chosen randomly to make room whenever necessary.
Recall that in a Splay tree, data at the leaf nodes
are the least recently used, and hence randomly pick-
ing a leaf node is a reasonable heuristics. In fact, it
is this property that the Splay tree is preferred over
other height-balanced structures (such as AVL trees [1]
and Red-Black trees [8]). There is no mechanism in



Algorithm Splay:

while R is not the root
if R’s parent is the root
rotate R about @

else if R is in a homogeneous configuration with its predecessors
perform a homogeneous splay, first rotate () about P

and then R about @

else /* R is in heterogeneous configuration with its predecessors */
perform a heterogeneous splay, first rotate R about )

and then about P

Figure 2: Splay algorithm.

these structures to facilitate an efficient eviction pol-
icy without maintaining additional information. This,
however, will consume the already scarce storage re-
source and hence is expected to be less effective than
the Splay tree. Second, the node structure of our Splay
tree differs slightly: as shown in Figure 3, ours is laden
with a key range as opposed to a single key value, and
an additional pointer to a leaf page.

Figure 3 provides a pictorial representation of how
the different data structures are related to one another.
The figure contains two parts: the top portion shows
that the main memory is split into two regions, one for
the splay tree and the other for the ILRU; the second
portion shows the disk-based B+-tree structure. The
B+-tree shown stores the data records at its leaf nodes.
As shown, the splay tree buffers store the frequently
accessed leaf pages, and the ILRU buffers manage fre-
quently traversed paths (i.e., the internal nodes of the
B+-tree). We note that the leaf nodes are not kept
at the ILRU buffer. This is because it will be kept in
the Splay tree where the search process begins (see the
Search algorithm in the next section).

4.2 GHOST operations

As 1n any data structures, the three primitive oper-
ations that have to be addressed are: search, insert,
and delete. In our case, we are interested in the ef-
fects of these operations and their implications for the

GHOST scheme.

Search

Figure 4 describes the algorithm for searching via its
search key. There are two cases to consider. The first
is when the pointer to the leaf page is in the Splay
tree: in which case, only one I/O for fetching the leaf
page from disk is needed. Searching the Splay tree
will bring the relevant Splay tree node to be the root.
This ensures that frequently and permanently used leaf
pages have corresponding entries near the top of the
Splay tree.
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Second, if the required key cannot be found in the
Splay tree, the B4+-tree will be searched directly. The
presence of an ILRU buffer allows popular index pages
to be obtained without additional disk T/0O.

Algorithm Search(Key)

Search Splay tree for a node where the key
is covered by the key interval
if found, return pointer to leaf page
else (/* not found */)
Search B+-tree, with the aid of ILRU buffer
to reduce the amount of 1/O
When the leaf page is found
create a new node for it
insert it into the Splay tree
Return pointer to leaf page.

Figure 4: Search algorithm for the GHOST scheme.

Insertion

Insertion of a new data item in a DBMS is preceded
by a Search operation. This means that by the time
the appropriate node is located, there will be a Splay
node entry for the corresponding leaf node in the root
of the Splay tree. There are now only two situations
to worry about:

e When the boundary values of the leaf node have
been changed. For instance, in inserting a data
item with key value 96 into a leaf node having
key interval [100,145], we are required to update
the key range in the Splay tree root to [96,145].

e When the insertion causes a node split in the leaf
node. For example, if insertion causes a node split
with node A (interval [96,120]) and B [121,145]),
the corresponding key interval in the Splay tree
will have to be changed to reflect one interval,
and a new node is inserted to reflect the other
interval.
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Figure 3: A graphical representation of the GHOST scheme.

Deletion

Like insertion, deletion requires a prior search opera-
tion. The situations requiring attention are symmet-
rical to the ones in Insertion:

e When the deletion causes a change in the key in-
tervals as a result of deleting data items that are
boundary key values in the Splay tree nodes. This
requires changing the Splay tree nodes to reflect
the new ranges.

e When deletion causes two leaf pages to be merged
together, thus requiring a change to the key inter-
val of one Splay tree node, while the other can be

deleted.

5 Experimental Study

We present in this section an experimental study of
the GHOST strategy proposed in this paper. There

are two performance metrics. The first is the hit ratio
which is defined as the ratio obtained by dividing the
number of requests into the number of page faults (i.e.,
disk T/O operations). The second is the number of
disk I/Os missed in a sequence of 500,000 disk queries
made.

The data set we used in our experiments consists of
10 million unique integers drawn randomly from the
interval [1..100M]. These numbers are inserted into a
B+-tree at random prior to the conduct of any experi-
ment. Table 1 summarizes the system parameters that
are used. We assume that each data record contains
200 bytes and is stored in the leaf of the B+-tree. The
resultant B+-tree has four levels with 1,61,6868 and
769,230 nodes at levels 1,2, 3 and 4 respectively.

We experimented with three different types of
queries:  uniform, skewed-clustered, and skewed-
unclustered. The difference among the last two is that
while queries are skewed towards certain datapoints,
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| Parameter | Default Values | Variations |
System Parameters
page size 4K
buffer size 128 pages 16-1024 pages (or 64K-4M)
percentage of buffers 50% 0-100%
allocated to Splay tree
disk pointer size 16 bytes
data key size 8 bytes
in-memory pointer 4 bytes

Splay tree parameters

size of node 40 bytes

Database Parameters

10 million

200 bytes

number of records
size of record

Query Parameters

query type point
query distribution

no. of queries

500,000

skewed-unclustered

range
uniform, skewed-clustered

Table 1: Parameters and their values.

the latter’s spread of skewness is across a greater range,
i.e., the number of “hot” pages is larger for the latter.
This behavior is demonstrated in Figure 5. Notice
that both data query points in skewed-clustered and
skewed-unclustered distributions are identical (Zipf at
0.01), but the latter is randomly scattered.

The first three sets of experiments examine the per-
formance of our proposed buffering scheme, GHOST,
against ILRU and OLRU, under different workloads as
total available size for index buffering are varied. The
priority scheme of [4] will not be examined for reasons
highlighted in section 2.4. In the GHOST scheme, 50%
of the available memory is devoted to the Splay tree
and the remaining is reserved for buffering index nodes
under the ILRU strategy.

5.1 Effect of Workloads
Experiment 1

In the first experiment, we examine the performance
of different buffering schemes under uniform workload.
Intuitively, uniform workload is the worst case sce-
nario for the GHOST scheme. This is because, under
uniform workload, all records are equally likely to be
accessed, and so the benefit of retaining pointers to
“frequently” accessed leaf pages (all pages are equally
frequently accessed!) significantly reduces. Figures
6(a) and (b) show the results under which total mem-
ory size is varied from 16-1024 pages. As expected, the
hit-rate under all schemes increases with the buffer size
(see Figure 6(a)). Furthermore, we observe that the
hit-rate under OLRU and ILRU are roughly the same.
While the GHOST scheme performs close to OLRU
and ILRU for small buffer sizes (< 128 pages), it is

345

twice as well for large buffer sizes. Figure 6(b) shows
the number of cumulative number of page I/Os under
each buffering scheme. As is predicted, all the numbers
decrease with increasingly larger buffers. However, we
observe that when the buffer size is small, the GHOST
scheme actually incurs more 1/Os (despite its higher
hit rate). Upon investigation, we found that this is
attributed to the high page fault when there 1s a cache
miss in the Splay tree. For small buffer sizes, the space
allocated to the ILRU is too small to be useful. As
a result, any cache miss will result in the entirety of
the search path being accessed. As the buffer sizes
increase, the GHOST scheme’s ability to retain more
pointers (than the ILRU and OLRU) still pays off and

it takes the lead once again.

Experiment 2

Figures 7(a) and (b) show the performance of the three
buffering schemes under a skewed-clustered query dis-
tribution. Unlike Experiment 1 where the query is uni-
form (a.k.a. random), we expect queries to be skewed
along a given key cluster. This suggests that better
performances can be expected. Indeed, the GHOST
scheme performs better than the closest contender in
both hit rate and total I/O count. For T/O count, the
gain is about 25%. This is considered significant since
under a clustered skewed distribution all the frequently
accessed leaf nodes will be collected in close proximity,
which a simple ILRU-type scheme can be expected to
perform well as the same paths along the index tree is
traversed frequently to reach that data cluster.



120000 =TT T T 1

| uniform query distribution e ]

100000 = —

80000 f— —

Frequency

40000 p— —

20000 = —

60000 [~ —

1 1 1 1 1 1 1 1 1

0  1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 le+08

Query range (in buckets)

(a) Uniform Query distribution.

120000 - T T T 1
| skewed clustered query distribution e ]

100000 |— —

80000 [~ —

60000 [~ —

Frequency

40000 p— —

20000 [—e —

M--.

0 le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 1le+08
Query range (in buckets)

(b) Skewed-clustered query distribution.

120000 T T T

| skewed unclustered query distribution e ]

100000 =

80000 f—

60000 [~

Frequency

40000 p—

20000 =

0
0  1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07 le+08

Query range (in buckets)

(c) Skewed-unclustered query distribution.

Figure 5: Different Query workloads and their visual representation.

Experiment 3

In this experiment, we compare the three schemes
under skewed-unclustered distribution. Unlike the
skewed-clustered distribution, there are now multiple
non-contiguous active clusters. As a result, there will
be many more such paths and it will become unlikely
that all or these paths can be cached. Thus, we can ex-
pect the performance of ILRU and OLRU to be poorer.
This is confirmed in our result shown in Figure 8. On
the other hand, in the GHOST scheme, the problem
is corrected through the use of the Splay tree nodes,
whose nodes store only pointers to leaf nodes. GHOST
outperforms ILRU and OLRU by up to 30% in terms
of /0. The results clearly demonstrate the impressive
performance of the GHOST scheme over the rest.

5.2 Effect of Range Queries

We also conducted an experiment to evaluate the
relative performance of the three buffering schemes
on range queries under a skewed-unclustered workload
(skew factor of 0.01). Here, we fixed the total number

346

of memory pages to 256 (i.e., I MB of memory), and
50% of the space is allocated to the Splay tree. For a
range query with interval [r1, r2], it is evaluated by
searching for the leaf node that contains r1, and the
chain of leaf nodes are followed to retrieve all records
whose key values are in the interval. In this experi-
ment, the queries are generated such that it retrieves
an average of four leaf nodes. We vary the percentage
of range queries from 0% (all point queries) to 100%
(all range queries). The result is shown in Figure 9. As
shown, the hit ratio i1s not affected by the percentage
of range queries. However, all schemes’ /O counts
increase with the percentage of range queries. This
is expected since more data are being accessed. The
interesting point to note is that the GHOST scheme
remains the best scheme, and outperforms the other
scheme by up to 20% of the total /O count. We note
that this is lower than the result for point queries. This
can be explained as follows. The total I/O count com-
prises two components: internal nodes and leaf nodes.
For all the schemes, the cost to access the leaf nodes
are the same and is larger for range queries than point
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Figure 6: Query hit rate and page 1/O of different buffering schemes under uniform query workloads.
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Figure 7: Query hit rate and page I/O of different buffering schemes under skewed clustered distribution.
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skewed unclustered distribution.
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Figure 10: Results under skew unclustered for varying memory allocation and distributions.

queries. The buffering schemes, however, only benefit
internal nodes. Thus, we can expect the gap between
GHOST, and TLRU and OLRU, to be narrower as the
range increases. However, it is uncommon to have
large number of range queries with large ranges. Thus,
GHOST is a promising alternative buffering scheme to
ILRU and OLRU.

Before we leave this section, it is worth noting that
the experimental study is based on a naive evaluation
strategy for range queries, i.e., it can be considered
a worst case scenario for GHOST. In fact, a cleverer
scheme is to search for a node in the Splay tree that
intersects the query interval (instead of one that con-
tains the left boundary value). In this way, the chances
of a hit in the Splay tree is higher. This will, however,
requires us to modify the leaf nodes to be chained back-
ward as well as forward. Thus, by hitting a node that
is in the middle of a range, we can use the backward
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and forward pointers to traverse the leaf nodes. We
are currently investigating this scheme.

5.3 Effect of Memory Allocation

In the preceding experiments, we have split the total
buffer size evenly between the ILRU buffer and the
Splay tree. One of our concerns is whether and how
GHOST’s performance is affected by the allocation of
memory between the Splay tree and the ILRU buffer
under varying amount of available total memory.
While we do not expect the GHOST scheme to be
superior when 100% of the available memory are allo-
cated to the Splay tree, we do conjecture that the per-
formance of GHOST is likely to be better if a larger
portion of buffers are allocated. We verify this with
an experiment, where we plot the performance metric
against different internal allocation under different al-
locations of total buffer memory. Figure 10 shows our
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Figure 11: Results under skew unclustered for varying Zipfian factor.

empirical findings for four different buffer sizes: 16, 64,
256 and 1024 pages. The evidence reveals more then
just a simple relation; instead, it suggests that when
the total available memory is small (e.g. in the 16-page
case), allocating more memory to the Splay tree will
give a sharp boost to the performance. This further
confirms our result and observation in earlier experi-
ments. On the other hand, with a large buffer size, the
performance hits the performance limit rapidly even
with small allocations to the Splay tree. We also ob-
serve that assigning too much buffer may not be help-
ful. For very large buffer size, the Splay tree is caching
not only frequently accessed pointers, but also those
that are not frequently accessed. Pointers in the latter
category are often replaced before they are being ac-
cessed again, thus caching them only results in fewer
space being allocated to the ILRU buffers (which in
turn restricted the number of paths being retained in
the ILRU buffers). As a result, the overall performance
degrades a little.

We also studied the effect of the distribution of
queries under the skewed-unclustered workload, i.e.,
how the value of the zipf factor affects the perfor-
mance of GHOST. In this experiment, we fixed the
total memory at 256 pages. Figure 11 shows the re-
sults of this experiment. When the Zipf factor is 1.0,
all leaf pages are equally likely to be accessed, i.e., the
skewed-unclustered workload degenerates to the uni-
form workload. In this case, it becomes more bene-
ficial to allocate more memory to the Splay tree. On
the other hand, a small Zipf factor means more queries
are accessing a certain set of “hot” pages. Our results
show that the hit rate and 1/O performance improves
as the Zipf factor reduces. This is because the chances
of finding the pointers to the hot pages in the Splay
tree increases with more queries accessing them. How-
ever, unlike the uniform workload, we note that we do
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not need to allocate too much memory to the Splay
tree for the same reasons that we have discussed in
the previous experiment. In our experiments, it turns
out that 50% of the memory allocated to the Splay
tree 1s sufficient to lead to excellent performance.

6 Conclusion

It appears from the preceding discussions and experi-
mentations that the GHOST scheme for index buffer-
ing presents a more efficient and robust alternative to
other known strategies. The power of our proposed
approach centers on the observation that we can store
a direct pointer to leaf nodes of a B+-tree without
having to buffer the search path of the structure. As
a first cut, we have picked the ILRU and Splay tree
in our implementation. However, any other buffering
mechanisms and data structures having similar prop-
erties would have sufficed.

We have experimented with the GHOST scheme un-
der a variety of different workloads, but it has emerged
being the best performer in most of the cases. This
performance gain is beyond what we have imagined
and provides an illustration of the power of the pro-
posed scheme.

Like any deserving piece of work, we are interested
in understanding more of its features if not for the time
constraints faced. For example, our results show that
the optimal allocation of buffers to the Splay tree de-
pends on the workload. This may call for an adaptive
approach in dynamic environments where the work-
load changes. We are currently investigating how to
realize such a scheme.

Last but not least, there are a number of policies
which we have adopted because of their simplicity. For
example, a leaf node of the Splay tree is selected at
random for eviction whenever we are out of memory
space. There could have been other policies: e.g., pick



the node furthest away from the root, or perform a
bulk eviction rather than repeating this operation all
so often. All of these options are currently being ex-
plored and studied empirically.
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