Quantitative Biology > Genomics
[Submitted on 4 May 2023]
Title:Fuzzy Gene Selection and Cancer Classification Based on Deep Learning Model
View PDFAbstract:Machine learning (ML) approaches have been used to develop highly accurate and efficient applications in many fields including bio-medical science. However, even with advanced ML techniques, cancer classification using gene expression data is still complicated because of the high dimensionality of the datasets employed. We developed a new fuzzy gene selection technique (FGS) to identify informative genes to facilitate cancer classification and reduce the dimensionality of the available gene expression data. Three feature selection methods (Mutual Information, F-ClassIf, and Chi-squared) were evaluated and employed to obtain the score and rank for each gene. Then, using Fuzzification and Defuzzification methods to obtain the best single score for each gene, which aids in the identification of significant genes. Our study applied the fuzzy measures to six gene expression datasets including four Microarray and two RNA-seq datasets for evaluating the proposed algorithm. With our FGS-enhanced method, the cancer classification model achieved 96.5%,96.2%,96%, and 95.9% for accuracy, precision, recall, and f1-score respectively, which is significantly higher than 69.2% accuracy, 57.8% precision, 66% recall, and 58.2% f1-score when the standard MLP method was used. In examining the six datasets that were used, the proposed model demonstrates it's capacity to classify cancer effectively.
Current browse context:
q-bio.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.