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ABSTRACT

Previous works on chord recognition mainly focus on
chord symbols but overlook other essential features that
matter in musical harmony. To tackle the functional har-
mony recognition problem, we compile a new profession-
ally annotated dataset of symbolic music encompassing not
only chord symbols, but also various interrelated chord
functions such as key modulation, chord inversion, sec-
ondary chords, and chord quality. We further present a
novel holistic system in functional harmony recognition;
a multi-task learning (MTL) architecture is implemented
with the recurrent neural network (RNN) to jointly model
chord functions in an end-to-end scenario. Experimental
results highlight the capability of the proposed recognition
system, and a promising improvement of the system by
employing multi-task learning instead of single-task learn-
ing. This is one attempt to challenge the end-to-end chord
recognition task from the perspective of functional har-
mony so as to uncover the grand structure ruling the flow of
musical sound. The dataset and the source code of the pro-
posed system is announced at https://github.com/
Tsung-Ping/functional-harmony.

1. INTRODUCTION

.
Harmony and tonality represent the essence of West-

ern tonal music. A complete analysis of the functional
harmony in a musical piece needs one to utilize several
interrelated concepts, such as chord progression, diatonic
function, chord inversion, key modulation, to name but a
few. These concepts are of fundamental importance in mu-
sic theory, as they provide a systematic guide for one to
understand how a phrase starts and how it ends, how one
chord is related to another, how a chord is related to the
key of the music, and more generally, how music works.

Computational approaches to analyzing musical har-
mony have gained wide attention in the past decades.
Many works related to this topic, such as chord recogni-
tion [2,6,12,18,21,23,35], key detection [3,9,17,27], and

c© Tsung-Ping Chen and Li Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Tsung-Ping Chen and Li Su. “Functional Harmony Recognition of
Symbolic Music Data with Multi-task Recurrent Neural Networks”, 19th
International Society for Music Information Retrieval Conference, Paris,
France, 2018.

chord sequence modeling and generation [5, 10, 14, 28, 31,
32], as the sub-problems of the complete functional har-
mony recognition problem, have been extensively studied.
Among these sub-problems, chord recognition is arguably
the most widely-investigated one.

Chord recognition focuses on the identification of chord
symbol, i.e., symbols which indicate the root note, the
chord quality (e.g., Major), and occasionally an extra in-
terval number (e.g., seventh) of a chord. 1 Such a notation
system provides direct instructions on chord construction,
and therefore becomes prevalent in jazz and pop music.
However, this notation system is insufficient for a more
holistic analysis as it provides no information about chord
functions. 2 For example, the secondary chord 3 that plays
an important role in the analysis of the hierarchical struc-
ture in a chord sequence is rarely discussed in the literature.
Little efforts at such data annotation are due to it requires
musicology expertise. As a result, there is no systematic
studies on a more holistic recognition system based on all
the above-mentioned concepts of functional harmony anal-
ysis, to the best of our knowledge. Although this topic has
been extensively studied in the field of music information
retrieval (MIR), the computers’ ability of harmonic analy-
sis is still quite limited.

In this paper, we discuss the functional harmony recog-
nition problem. To tackle this problem, we first build a new
dataset comprising five different chord functions, namely
the key, primary degree, secondary degree, quality, and
inversion. Since there is no unique and exact definition
on functional harmony analysis of music, we alternatively
consider the functional harmony recognition problem as
the recognition of the above-mentioned five aspects, in or-
der to facilitate the discussion in an engineering sense. We
formulate this problem with the perspective of multi-task
learning (MTL), and implement the system using the re-
current neural networks (RNN) with long short term mem-
ory (LSTM) units, a network structure that has been found
useful in the audio chord recognition problem [6]. Exper-
iments on the dataset show that the chord functions can
be better resolved within the multi-task learning scenario

1 For example, a chord played with notes C-E-G-B is notated as CM7.
2 In the strict sense, the term chord function refers to the diatonic func-

tion, namely the Roman numeral annotation and the functions like tonic
(T), dominant (D) and sub-dominant (S). In this paper we opt to choose
a rather loose definition by regarding key, degree, and inversion also as
some generalized ‘functions’ of a chord.

3 In this paper, the term secondary chord refers to the chord that does
not serve the key. The borrowed chords, altered chords and the secondary
dominant belong to this category.
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compared to a single RNN structure, marking a step toward
a more advanced computational music analysis framework.

2. RELATED WORK

2.1 Chord recognition and key detection

The chord recognition problem has been widely investi-
gated on both the audio and symbolic data. In recent years,
various machine learning techniques have been applied in
this problem. In audio data processing, RNN-based meth-
ods such as the LSTM-based networks have been adopt
due to its potential to model the long-term dependency of
a time series [6,12,30]. Besides, [26] proposes a word2vec
neural network to model the harmony tension, which also
represents another perspective of chord function modeling.
In symbolic data processing, early studies based on hand-
crafted rules have considered the chord recognition of Ro-
man numeral notations (i.e., chord symbol and tonality)
[13]. [19] considered deep neural networks in chord recog-
nition. Recent approaches based on machine learning, with
evaluation performance include: [15] applies deep learning
to identify non-cord tones in symbolic music data, and [21]
uses a semi-Markov conditional random field (CRF) model
for symbolic-level chord recognition.

Most of the studies on the key detection problem inves-
tigate the global key or home key detection [9, 17]. [17]
proposes a global key finding algorithm with a convolu-
tional neural network (CNN). The studies of key modu-
lation detection are less seen, while there are still some
related works such as local key detection [27].

2.2 Multi-task learning (MTL)

The MTL technique is proposed to fit one shared network
to multiple related sets of labels, i.e., to learn multiple tasks
at a time [20, 29]. If a primary task itself is difficult or is
short of training data, its performance can be improved by
introducing some auxiliary tasks by assuming these tasks
share similar network structure.

MTL has exhibited great potential in MIR [11] since
different attributes of music are often highly related. For
example, in [34], the neural network is shared by the chord
recognition task as well as the root note recognition task,
and doing this can help to improve the accuracy of chord
recognition. Similar ideas can also be seen in other models
such as the multi-chain hidden Markov model (HMM) [22]
and the dynamic Bayesian network [24]. Therefore, it sug-
gests that the functional harmony problem itself is a multi-
task learning problem, as determining one type of chord
function usually needs the information of another.

2.3 Datasets for functional harmony recognition

Accurate annotation chord functions is hard to build in the
audio domain, but rather feasible in the symbolic domain.
There are a few datasets including annotation of some, if
not all, chord functions: for example, the KSN dataset pro-
vides the annotation of chord and key modulation (i.e., the
Roman numeral annotation) [16], the Theme And Varia-
tion Encodings with Roman Numerals (TAVERN) dataset

has Roman number chord annotation [8], and the Yale
Classical Archive Corpus (YCAC) dataset has local tonic
label and chord [33].

3. DATA AND LABELS

We propose the Beethoven Piano Sonata with Function
Harmony (BPS-FH) dataset, which contains the symbolic
musical data and functional harmony annotations of the 1st
movements of 23 of Beethoven’s Piano Sonatas. 4 BPS-
FH dataset provides a more consistent corpus in terms of
musical form and genre with concise annotations for the
analysis of harmony. As an ongoing work, the annotation
will be extended to all the 32 piano sonatas.

3.1 Annotation process: harmonic analysis 5

The BPS-FH dataset is annotated by an expert musicolo-
gist with a basic harmonic analysis process step-by-step.
As opposed to the chord symbol annotation, the traditional
harmonic analysis in music theory and musicology adopts
a relative representation for chords to emphasize the in-
teraction between chords in a given context. To perform
harmonic analysis, there are several implicit processes:

• Key identification: the first step of harmonic analy-
sis is to identify the local key according to context.
Note that in many classical musical pieces, there is
no exact analysis on the local key, for key modula-
tion usually occurs, making it hard to find the local
key in a certain excerpt. 6 When the ambiguity oc-
curs, finding a later cadence which is in a key-steady
context, and then analyzing chords backwards might
give a solution.

• Segmentation: since music itself is not represented
originally as a sequence of chords, it is important
to identify reasonable segments for labeling chords.
A convincing segmentation should take the tempo-
ral rhythm and the harmonic rhythm (i.e., the rate at
which the chords change) into consideration.

• Harmonic reduction: after determining the seg-
ments, each segment is reduced to a chord symbol
(including chord root and chord quality) according
to the tones within it. Harmonic reduction is a non-
trivial and complicated process; there are many con-
fusing factors, such as the non-chord tones, or the
absence of harmonic tones in the segment.

• Inversion recognition: the inversion of a chord is de-
termined by which of the notes is the bottom note, or
bass note, of the chord. Typically, the lowest note in

4 The 23 pieces are: No. 1, 3, 5, 6, 8, 11, 12, 13, 14, 16, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 31, and 32. And all the repetitions in the
sonatas are unfold.

5 In this paper, harmonic analysis refers to Roman numeral analysis.
6 In music, modulation is the act of changing from one key (tonic, or

tonal center) to another. Generally speaking, the key of a musical piece
refers to the global key which identifies the global tonic note and the
final point of rest for the piece, while a modulation conducts the piece
temporarily to another key, that is, a local key, which replaces the global
tonic with a temporary tonic in a local area.
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(a) Diatonic function in C major.

(b) Diatonic function in C minor (harmonic minor scale).

Figure 1: Illustration of diatonic functions in relation to
the diatonic chords of the given keys. Note that in minor
key, the superscript + is added to the mediant because it is
an augmented chord.

a segment would be considered as the bass of the re-
duced chord. However, the lowest note is not always
regarded as the bass notes; the pedal point is one of
such examples.

• Labeling diatonic functions: after determining the
key and the chord symbol, a function is assigned
to the chord. In a major key, the following Ro-
man numerals are used to represent the functions of
diatonic chords: I (tonic), ii (super-tonic), iii (me-
diant), IV (sub-dominant), V (dominant), vi (sub-
mediant), and viio (leading). The capital numerals
denote major chords, the lowercase numerals denote
minor chords, and the superscript o denotes dimin-
ished chords. Figure 1 shows the details of diatonic
functions in both major and minor keys.

Figure 3b exhibits a brief example of harmonic analysis
for the excerpt in Figure 3a. It is worth mentioning some
possible confusions when analyzing harmony on this ex-
ample: at measure 83, there are two non-chord tones, G at
the 1st beat, and Eb at the second half of the 2nd beat, both
of which might be confusing for harmonic reduction. Es-
pecially, the existence of the the non-chord tone G prevents
the note E (the last note of measure 82) from directly re-
solving to F, and blurs the boundary between F-minor key
and Eb-major key. Hence, the key modulation might occur
at measure 83 as labeled, but might also occur at measure
84 or even 85. It should be acknowledged that harmonic
analysis is inherently subjective, and the confounding ef-
fect of subjectivity may affect the performance of a chord
recognition system in many ways [25]. Details about the
harmonic analysis techniques and labeling paradigms can
be found in [1] and [4] .

3.2 Annotations in the BPS-FH Dataset

A fundamental harmonic analysis provides the information
of key, degree, quality and inversion. Therefore, the BPS-
FH dataset has the corresponding annotations as follows:

• Key: the key to which a chord belongs in a local
area. Since key modulation is essential in piano
sonata, we trace the change of key, that is, we spec-
ify the local key, or temporary tonic, so as to show
that how a key deviates from the global one during
the course of the movement.

• Primary degree and secondary degree: degree refers
to the position of a chord’s root on the diatonic scale
of a key. 7 There are seven possible degrees on a
diatonic scale, that is, 1, 2, ..., 7. We use a pair
of degrees, primary degree and secondary degree,
for both diatonic chords and secondary chords. Pri-
mary degree indicates the position of the temporary
tonic on the scale, while secondary degree denotes
the position of the chord’s root based on the tempo-
rary tonic; the couple of degrees is represented as
secondary degree/primary degree. In the case of dia-
tonic chord, the primary degree is always 1. That is,
the temporary tonic is the same as that of the current
key. As for the secondary chord, both the primary
degree and the secondary degree can be any possible
degree. For example, the diatonic chord V is rep-
resented as 5/1, while the secondary chord V/IV is
represented as 5/4.

• Quality: chord quality is defined by the intervals
within a chord. For instance, a major triad has a ma-
jor third and a perfect fifth above its root. 10 types of
chord quality are identified in the dataset, which are
major triad (M), minor triad (m), augmented triad
(a), diminished triad (d), major seventh (M7), minor
seventh (m7), dominant seventh (D7), diminished
seventh (d7), half-diminished seventh (h7), and aug-
mented sixth (a6).

• Inversion: inversion of a chord describes which of
the tones in a chord is the bass note. For exam-
ple, the C-major triad has three candidates, C, E and
G, as its bass, and thus has three possible inversions
(root position is regarded as one inversion in the con-
text). For triads and seventh chords, there are totally
four possible inversions: the 0th inversion (root posi-
tion), 1st inversion ( 6or 6

3 for triad, and 6
5 for seventh

chord), 2nd inversion ( 6
4 for triad, and 4

3 for seventh
chord), and 3rd inversion (42 for seventh chord). Note
that only seventh chords have 3rd inversion.

In summary, the BPS-FH dataset contains 86,950 note
events, 29 different keys, 531 key modulations, and 7,394
chord labels. 8

7 For example, the chord C major triad has the degree 1 in C major
key, while has the degree 4 in G major key.

8 Among all the chords, 3,438 are inverted; 839 are secondary chords;
2,951 are major triads; 1,356 are minor triads; 25 are augmented triads;
286 are diminished triads; 30 are major seventh chords; 86 are minor sev-
enth chords; 2,037 are dominant seventh chords; 453 are diminished sev-
enth chords; 104 are half diminished seventh chords; 66 are augmented
sixth chords.
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(a) MTL-BLSTM-RNN with 1 task-specific layer

(b) MTL-BLSTM-RNN with 2 task-specific layers

Figure 2: Illustration of the MTL-based functional har-
mony recognition system, with a BLSTM-RNN model tak-
ing a data stream as input.

3.3 Data representation

The input data is represented in the format of a 61-key
piano-roll, with the pitch range from C1 to C6 (middle C
= C4); the duration of each note is measured in crotchet
beats. For time resolution, we define a 32th note as the
minimal time step. All the note events out of this pitch
range are transposed to fit in, while the durations of the
note events whose lengths are shorter than the minimal
time resolution are set to be the same as the time resolu-
tion. A piano-roll at a time instance is called a frame.

As shown in Figure 2, the input of the LSTM cell is
a segment of data with 32 frames. That is, for a musical
piece with 4/4 meter, the length of a segment is 4 beats
(or equivalently 1 bar). And a musical clip containing 64
segments is fed to the neural networks. The hop size for
the neural networks is 4 frames (or half a beat.)

4. MODEL

We employ recurrent neural networks (RNN) with bidirec-
tional long-short-term memory (BLSTM) units (denoted as
BLSTM-RNN hereafter) to model sequences of functional
harmony, by using the above-mentioned data representa-

Label Dim Content
Key 24 24 major and minor keys
Pri. deg. 21 7 Roman numerals by 3 (neutral, ], [)
Sec. deg. 21 7 Roman numerals by 3 (neutral, ], [)
Quality 10 M, m, a, d, M7, m7, D7, d7, h7, a6
Inversion 4 0th, 1st, 2nd, 3rd

Table 1: Chord function labels in the BPS-FH dataset, in-
cluding key, primary degree (pri. deg.), secondary degree
(sec. deg.), chord quality, and chord inversion.

Set Piece No.
Training 1, 3, 5, 11, 16, 19 20, 22, 25, 26, 32
Validation 6, 13, 14, 21, 23, 31
Testing 8, 12, 18, 24, 27, 28

Table 2: The pieces in training, validation, and testing sets.

tion as input. Such kind of model has been widely used
in audio chord symbol recognition problems [6,7,12], and
has been found capable in learning long-term information
such as music structure. Specifically, we consider the fol-
lowing two types of networks:

• MTL-BLSTM-RNN with 1 task-specific layer: as
shown in Figure 2a, we adopt a simple BLSTM
architecture with 1024 hidden units for multi-task
leaning. The outputs of the forward and the back-
ward cells are concatenated and form a 1024-by-2
matrix. This matrix is flattened and is connected to
the output layer through a fully-connected layer. The
output layer is a 80-D vector containing the classes
for the five tasks listed in Table 1. Each class is one-
hot encoding, and the Softmax function is used for
the output vector.

• MTL-BLSTM-RNN with 2 task-specific layers: as
shown in Figure 2b, the architecture is the same as
the above, but with an additional task-specific layer
before the output layer, in order to further increase
the model capacity.

Moreover, to verify the advantage of MTL, we also con-
sider the single-task learning (STL) as a baseline approach,
where the same BLSTM-RNN is used. As a result, there
are five networks in the STL-BLSTM-RNN model, each
for one chord function recognition task respectively, and
are trained individually in the experiment.

5. EXPERIMENT

5.1 Experimental settings

In the training stage, we divide the 23 pieces in the dataset
into three parts, namely the training set, the validation set,
and the testing set. Each part contains overlapped clips
which are the input instances of the BLSTM networks.
Each clip contains 64 segments, and the overlap between
two consecutive clips is 32 segments. To balance the data
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(a)

(b)

(c)

(d)

(e)

Figure 3: (a) An excerpt from the 1st movement of Beethoven’s Piano Sonata No. 8, MM. 82-89. (b) The harmonic
analysis of this excerpt represented in both chord symbol and chord function. Note that the slash used in chord symbol
stands for an inversion, and the note behind the slash denotes the bass of the chord. In the analysis, this expert starts from
F minor, modulates to Eb major at measure 83, and finally ends with an authentic cadence. (c) 5 types of annotations
representing the functions in (b). (d) The testing result of chord function recognition of the excerpt. Wrong predictions are
marked in red. (e) The translation of the result in (d) to chord symbol. For the sake of concision, only the wrong predictions
lasting at least one quarter note are translated.

distribution among all possible keys, We perform data aug-
mentation by transposing all the clips into 12 keys. As a
result, there are 7,320 clips for training, 3,672 clips for
validation, and 3,636 clips for testing. Table 2 shows the
musical pieces used in each set. In the experiment, we
compare the following two tasks:

• Chord symbol recognition: with the symbolic data
of music as inputs, the model outputs chord sym-
bol predictions in a segment-wise manner. We used
25 chord classes for the output layer, that is, 24
classes for 12 major triads and 12 minor triads, and
an ‘other’ class for chords not belonging to either
major triads or minor triads.

• Chord function recognition: similar as the chord
symbol recognition, but the outputs of the model are
chord functions containing five components.

Both the MTL and STL schemes are tested on the chord

function recognition task, while the chord symbol recogni-
tion is tested with STL. For the chord function recognition
task with MTL scheme, the outputs of the five chord func-
tions are translated to chord symbol to evaluate the perfor-
mance in terms of chord symbol recognition. And for the
chord function recognition task with STL scheme , five dif-
ferent networks are trained individually for the evaluation
of chord function recognition.

All networks are implemented with TensorFlow, and are
trained using stochastic gradient descent with the Adam
optimization method. For training objective, we compute
categorical cross-entropy between targets labels and net-
work outputs, and include a L2 regularization term. More-
over, to prevent over-fitting and to speed up training con-
vergence, recurrent batch normalization is applied, and the
dropout rate at the input and the output of the LSTM cell
is set to be 0.5.
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Task Model Key Degree Secondary Quality Inversion Overall Translation
Chord Symbol STL-BLSTM-RNN – – – – – 72.71 -

STL-BLSTM-RNN 67.06 48.31 9.38 61.87 57.95 23.57 56.05
Chord Function MTL-BLSTM-RNN with 1 task-specific layer 68.48 50.49 10.96 62.31 60.04 25.53 56.91

MTL-BLSTM-RNN with 2 task-specific layers 66.65 51.79 3.97 60.59 59.10 25.69 56.25

Table 3: Accuracy (in %) of functional harmony recognition and comparison between multi-task BLSTM and single-task
BLSTM. In the table, Degree stands for the accuracy of correctly predicting both the primary and secondary degrees of all
chords; while Secondary indicates the accuracy of correctly predicting the degrees of secondary chords.

5.2 Evaluation metrics

We compute the segment-level accuracy, the ratio between
the number of correct detection and the number of total
segments in the testing set, for each category. Only one
accuracy value is computed in the case of chord symbol
recognition, while six types of accuracies are computed in
the case of chord function recognition, namely the accu-
racies of key, degree, secondary chord, quality, inversion,
and finally, the overall accuracy. Note that the accuracy
of secondary chord is computed when a secondary chord
does exist. The overall accuracy counts the segments in
which the five chord function detections are all correct. An
extra translation accuracy is computed to examine the per-
formance of chord function recognition in terms of chord
symbol recognition.

5.3 Results

Table 3 shows the results of chord symbol recognition and
chord function recognition. In the task of chord symbol
recognition, the STL-BLSTM-RNN-based model gives an
accuracy of 72.71%. In comparison to other existing works
which also estimate chord symbols on classical music
datasets such as [12,21], this result is acceptable while also
reveals the room for improvement in recognizing chords in
western classical music.

In comparison with the chord symbol recognition task,
performing the chord function recognition task is much
more challenging. Specifically, the best overall accuracy
among all chord function recognition tasks is only 25.69%,
which is far from that of chord symbol recognition. This
is partly because there are as many as 10 chord qualities
for the model to predict, and partly because tonal harmony
itself is complicated and equivocal. On the other hand,
MTL-BLSTM-RNN model with 1 task-specific layer out-
performs the single-task one for all chord functions. This
indicates that employing multi-task learning results in a
promising improvement. Among all chord functions, the
improvements of predicting degree and inversion are the
most significant, with 2.18% and 2.09% increases in accu-
racy respectively. This consequence may result from the
fact that identifying the degree and identifying the inver-
sion of a chord are relatively difficult in classical music,
and thus benefit more from multi-task learning. Moreover,
the accuracies of secondary chord are very low for all ex-
periment settings; adding one more task-specific layer even
degrades its performance. This displays the difficulty of
learning the chord representation consisting of semantic

information. Finally, we translate the predictions of chord
function recognition tasks into chord symbol to examine
the performance in terms of chord symbol recognition. It
comes as no surprise that the all the translation accura-
cies are lower than that of chord symbol recognition. This
again marks the challenge of chord function recognition,
as it needs to consider not only the elements constructing a
chord symbol, but also more high-level semantic informa-
tion such as local key and degree.

An example of the chord function recognition result is
shown in Figure 3d. Because the prediction is segment-
wise, there are numbers of discontinuities in the predicted
sequences. This issue can be addressed by further incorpo-
rating temporal smoothing models such as the CRF [21]
in the future. A close examination of this result shows
that although the model gives ‘wrong’ predictions, part of
the predictions does match the ground truth on the level of
chord symbol. For instance, as demonstrated in Figure 3d
& 3e, there are whole-bar error predictions in key and sec-
ondary degree at measure 85; however, these detections be-
come correct if we translate them into chord symbol: they
are both C minor triads, albeit in different keys. In fact,
further analysis points out that the prediction of the modu-
lation to C minor at measure 85 is also meaningful: there
does exist a potential modulation for there is a tonicization
of vi constructed by the previous chord viio7/vi at the sec-
ond half of the measure 84. From this point of view, the
model does provide more insight into the analysis of tonal
structure in this excerpt, as an expert analyzer can do.

6. CONCLUSION AND FUTURE WORK

We have given a systematic investigation on the problem
of functional harmony recognition of symbolic data based
on deep learning techniques. Experiments on the proposed
Beethoven Piano Sonata with Functional Harmony dataset
indicate that functional harmony recognition is a task much
more challenging than the chord symbol recognition, and a
multi-task learning framework provides a promising solu-
tion better than a single-task one. Detailed analysis results
not only give insightful interpretation, and also pose fur-
ther challenging problems on recognizing key modulation,
secondary degree, etc., all with its semantic level higher
than chord symbols. This work marks a preliminary step
towards a holistic approach of modeling functional har-
mony, and also provide the potential for one to analyze
interpretable and meaningful music patterns from music,
or to explore some alternative interpretation of music in
the study of computational music analysis.
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Quereda. Harmonic, melodic, and functional automatic
analysis. In Proceedings of the International Computer
Music Conference (ICMC), pages 165–168, 2007.

[14] Nori Jacoby, Naftali Tishby, and Dmitri Tymoczko. An
information theoretic approach to chord categorization
and functional harmony. Journal of New Music Re-
search, 44(3):219–244, 2015.

[15] Yaolong Ju, Nathaniel Condit-Schultz, Claire Arthur,
and Ichiro Fujinaga. Non-chord tone identification us-
ing deep neural networks. In Proceedings of the 4th
International Workshop on Digital Libraries for Musi-
cology, pages 13–16. ACM, 2017.

[16] Hitomi Kaneko, Daisuke Kawakami, and Shigeki
Sagayama. Functional harmony annotation database
for statistical music analysis. In Proceedings of the
11th International Society for Music Information Re-
trieval Conference (ISMIR): Late Breaking session,
2010.

[17] Filip Korzeniowski and Gerhard Widmer. End-to-end
musical key estimation using a convolutional neural
network. In Proceedings of the 25th European Signal
Processing Conference (EUSIPCO), pages 966–970,
2017.

[18] Filip Korzeniowski and Gerhard Widmer. On
the futility of learning complex frame-level lan-
guage models for chord recognition. arXiv preprint
arXiv:1702.00178, 2017.
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