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Abst rac t 
This paper addresses the issue of color constancy, which is the 
the perceptual abi l i ty of the human visual system to assign the 
same colors to objects under different l ight ing conditions. We 
propose a method, based on finite-dimensional linear models of 
reflectance and i l luminat ion, which allows the transformation 
[R,G,B] images into color constant images. In contrast to pre­
vious work, we show that good results can be obtained using 
a 3-receptor system and some knowledge about the spectral 
properties of natural materials and i l luminants. In the method 
developed, an estimate of i l luminant in the scene is computed, 
which allows the computat ion of color constant descriptors of 
the pixel values in the image. In addi t ion, we show a method of 
computing the actual reflectances of the materials in the scene 
out of the computed color descriptors. 

1 In t roduc t i on 
One of the most interesting perceptual abilities of the human 
visual system is to assign the same colors to objects under dif­
ferent l ight ing conditions. In other words, a human observer 
looking at a certain scene perceives the colors of surfaces in a 
consistent way, although the spectral d istr ibut ion of the i l lu­
minant may vary considerably. This degree of independence of 
perceived object color on the i l luminat ing spectrum is called 
color constancy. 

In this paper, we describe an algori thm for generating color 
constant descriptors of surfaces. The idea is to transform an 
input image representing the intensities reflected from objects 
into a color constant image which is a representation of re­
flectances, therefore independent of i l luminat ion effects. When 
put formally, the problem is to find a conversion matr ix A that 
transforms the original [R,G,B] values of the image into color 
constant descriptors 6. If the original [R,G,B] values of the 
image are defined as PR, PG, and PB, denoted as then the 
fol lowing relation can be formulated: 

( i) 
The main goal of the work described in this paper is to find the 
values of the vector which for each pixel, is a set of (three) 
numbers representing the color descriptors of the mater ial , re­
gardless of the i l luminat ion. 

The approach we take is similar to the one forwarded by 
Buchsbaum [1]. Thus, it is a two-step process: estimating 
the i l luminant , and using the estimated i l luminant to obtain 
the descriptors. The method makes use of a finite-dimensional 
linear model which represents l ight sources and reflectances. 
Using this model, we show how an estimate to the i l luminant 
is obtained, and consequently, color constant descriptors. In 
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contrast w i th Buchsbaum's work, we base our choice of basis 
functions on statist ical measurements of natural ly occurring 
reflectances and i l luminants. In addi t ion, our approach shows 
that a 3-sensor input (red, green, blue) is sufficient for the 
estimation of the i l luminant and reflectances in the scene, in 
contrast w i th the method suggested by Maloney [6]. 

2 Fin i te-d imensional Linear Models 
The model which wi l l be used for the description of surface 
spectral reflectances and i l luminat ion is a finite-dimensional 
linear model [1,6]. The idea behind this model is to describe 
the surface reflectances and l ight sources through a weighted 
sum of a fixed set of basis functions. The reflectances and i l lu­
minants generated by the model must be physically realizable, 
otherwise they wi l l not represent real-life phenomena. The ba­
sis functions need not be physically realizable, and their only 
constraint is that they be linearly independent. Since the quan­
t i t y being measured is the reflected intensities, this implies that 
the physical interaction of l ight and surface reflectance has to 
be captured by sensor(s) w i th some spectral sensitivity curves. 
Thus, a th i rd component to be included in the model is the re­
sponse functions of the sensor in use, which introduces a th i rd 
set of l inearly independent functions. 

We now turn to the choice of the appropriate basis func­
tions. The easiest one is the sensitivity functions. As men­
tioned above, if we are to deal w i th the human visual system, 
then such curves have already been determined in many dif­
ferent ways. If the sensor is other than the eye, such as opt i ­
cal scanners for digitized images, then one can easily find out 
the specifications of the filters used in the process of capturing 
the scene onto a device. Whatever sensor is being used, these 
sensitivity curves wi l l be denoted as 
(corresponding to red, green, and blue sensitivity curves) and 

For the purpose of finding a finite-dimensional linear model 
of surface reflectance, one has to measure a large number of 
spectral reflectances of materials and derive the appropriate 
set of functions. One such study was conducted by Cohen [2], 
who computed the characteristic vectors of 150 Munsell chips 
randomly selected f rom a to ta l of 433 chips. In the analysis 
it turned out the the first three vectors accounted for 99% of 
the variance in the fit to the data. We w i l l therefore use these 
three vectors, which w i l l be denoted as where 
and 

Similarly, it is possible to determine a basis set which wi l l 
describe typical daylight conditions. In a study carried out 
by Judd, Mac Adam, and Wyszecki [4], spectral distributions 
of 622 samples of daylight have been subjected to character­
istic vector analysis. The study showed that the mean and 
two characteristic vectors accounted for most of the variance in 
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the data leading them to suggest a linear model of l ight w i th 
three degrees of freedom. Therefore our choice of three basis 
functions describing the luminance wi l l be the mean and first 
two characteristic vectors, which wi l l be denoted as where 

To combine the basis functions into the linear model, we 
take the product of the three functions. This is due to the fact 
that reflection is a product of i l luminat ion and reflectance, and 
to measure the reflection one needs sensitivity curves to filter 
the reflected intensities. Therefore a three-dimensional tensor 

is defined as: 

It is impor tant to note that the tensor is a fixed system of 
constants, and does not depend at al l on the materials being 
viewed. 

3 Es t imat ing the I l l um inan t 

Buchsbaum [1] proposed a part ia l solution for the recovery of 
the i l luminant : he assumed that the average reflected intensi­
ties system along the lines of corresponds 
to the one obtained f rom the actual i l luminance acting on a 
standard homogeneous f ield, internally embedded in the model. 
This standard internal reflectance was assumed to approximate 
the entire field average reflectance. There are two assumptions 
Buchsbaum made which weaken the solution considerably: (1) 
the tensor was picked in an ad hoc manner, wi thout any 
relevance to natural ly-occurr ing reflectances and i l luminants; 
(2) a fixed internal reflectance vector for the overall actual field 
average was bui l t in to the system. This vector was chosen to be 
equal reflectance at al l wavelengths, imply ing that the overall 
mean pixel values of al l images are grey. Moreover, there is no 
indication to whether this vector should be updated if the scene 
is known to be very different f rom normal rich scenes (e.g., a 
forest fu l l of green colors). 

The way we suggest to estimate the i l luminant is to match 
a system representing a general model of material reflectances 
w i th an average of reflected intensities exhibited by the mate­
rials w i th in a given image. This poses two problems which we 
address in the fol lowing sections: 

1. What can be considered as a "general" set of materials 
which includes, w i th high probabi l i ty, most of the mate­
rials found in scenes? 

2. How should the image average reflectance be generated 
such that it w i l l exhibi t dependency on the i l luminant 
and represent all materials equally? 

3 . 1 " I d e a l " M a t e r i a l S p a c e 

In order to be able to treat most of the natural ly occurring ma­
terials, one has to f ind a large ensemble of materials and record 
their spectral properties. One such study was conducted by 
Kr inov [5], who measured and documented the spectral sen­
s i t i v i ty curves of 370 materials of various types, such as soi l , 
vegetation, and water. This sample is " ideal " since the more 
materials it contains, the closer i ts average wi l l be to the aver­
age of the sample being examined (the image). As mentioned 
in Section 2, the characteristic vectors suggested by Cohen [2] 
represent a good approximation of reflectances. Therefore we 
suggest to represent this ideal material space w i t h the three 
characteristic vectors, and to compute the average of this ideal 
space in terms of the characteristic vectors. Thus, if is 

the k-th material in Krinov's sample set, then its representation 
using Cohen's basis functions is: 

(3) 

where 

Thus the average of all materials 0 is a vector computed as: 

(4) 

yielding a tr ip let of numbers which are the average of the ideal 
material space as represented by three characteristic vectors. 

3.2 Average Image Ref lectance 
There are two main requirements being imposed on the average 
image reflectance. The first requirement is that it should de­
pend on the i l luminat ion and its effects on the scene. The mo­
t ivat ion behind this requirement is that different l ight sources 
wi l l affect the scene differently, resulting in different reflected 
intensities. It is therefore desirable to generate an average 
which wi l l be sensitive to these changes and represent each 
l ight source differently. The second requirement is that all ma­
terials should be represented equally, no matter how large a 
region they occupy in the image. This is due to the fact that 
in the ideal material space presented in the previous section, 
each material is represented only once. Since our technique 
tries to f ind correspondence between the ideal space and the 
image space, it is desirable that the image space be sampled in 
the same manner. 

To satisfy both requirements, we chose a method which seg­
ments the image in to regions which differ from each other in 
their chromatic appearance. The averaging of the image re­
flectance is computed by segmenting the image into regions 
which differ f rom each other according to some criterion of ho-
mogeneity (set by the segmentation scheme). Each meaningful 
region is then averaged, and this average is added up to the 
to ta l average of the image reflectance. The tota l average is 
computed for al l three dimensions (i.e., [R,G,B]) and wi l l be 
denoted as Details regarding the segmentation are given 
in [3}. 

4 The A l g o r i t h m 

We now tu rn to describe the actual algori thm for computing 
color descriptors in detai l . As mentioned before, the proposed 
technique consists of two steps: estimating the i l luminant vec­
tor e, and finding the transformation matr ix A, which wi l l en­
able the conversion from [R,G,B]-space to color constant space, 
which wi l l be referred to as C-space. The two steps wi l l be dis­
cussed in detail below. 

4.1 Step 1 — C o m p u t a t i o n of 

1. Compute the average image reflectance 

(a) Segment the image into regions using some homo­
geneity cr i ter ion. 

(b) For each region, compute the average [R,G,B] values 
and add to the average reflectance 

2. Compute 

(a) Define the 3 x 3 mat r ix to be a representation 
of the reflectances in the image space in terms of 
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4.3 Discuss ion 
One of the assumptions made, used in Step 1 of the algorithm, 
is that the image reflectance space has enough materials to 
allow the transformation to the ideal material space. The mo­
tivation behind this assumption was the fact that the ideal 
material space contains a rich ensemble of materials, and thus 
its average is likely to be similar to averages of many scenes. 
The implication of this assumption is that the accuracy of the 
algorithm depends on the richness in materials of the input 
image. Clearly, the situation can be simplified if there exists 
a priori knowledge about the domain from which the images 
are taken, since the ideal material space can be reduced to in­
clude materials which are expected to be in the input images. 
For example, if it is known in advance that forests will be the 
subject of the images, then only materials which may appear in 
forests, such as leaves and wood, should be included in the ideal 
material space, thus increasing the accuracy of the algorithm. 

The C-values computed by the algorithm provide a means 
of recovering the actual reflectance of the material, as repre-
sented by the reflectance basis functions. Since the C-values 
are color descriptors which are constant regardless of the illu-
minant, and since they were computed using the linear model, 
it is a straightforward computation that allows the recovery 
of the reflectances. If we define the recovered reflectance as 
RR then this computation is simply: 

(10) 

5 Experiments 
In order to evaluate the effectiveness of the algorithm, a few 
experiments were designed and carried out on simulated and 
real images. Although each experiment was designed with a 
different goal in mind, the overall goal was to demonstrate the 
robustness and accuracy of the algorithm. 

5.1 Accu racy as a Func t i on of Knowledge A b o u t 
M a t e r i a l s 

The first goal was to evaluate the accuracy of the algorithm 
and the claim made earlier that a priori knowledge about the 
materials being viewed increases the accuracy of the results. 
Therefore the experiment was intended to compare the real C-
values of materials to the ones output by the algorithm given 
different illuminants. The real C-values were computed in the 
following way. Seven materials were chosen at random from 
the data collected by Krinov [5] and their real C-values were 
computed according to Equation 3. In addition, knowing that 
only the seven materials chosen were going to be used in the 
experiment, the ideal space was reduced to include only those 
materials, thus resulting in an updated set of averages of this 
space. 

As pointed out, the real C-values were to be compared to 
the C-values computed by the algorithm. The input to the algo­
rithm was computed in the following way. The materials were 
combined into a Mondrian. Since the only information about 
the materials was their spectral reflectance curves, there was a 
need to create an [R,G,B] image out of these reflectances, using 
some random illuminants and assuming some [R,G,B] filters. 
Therefore the [R,G,B] values of the patches were computed as: 

Figure 1: The real and estimated illuminant. 

C-values were computed for each material. The absolute error 
in the C-values compared to the true C-values are given in Ta­
ble 1. As can be observed from the figure, given the a priori 
knowledge about the materials, the results of the algorithm are 
accurate. 

5.2 Cons tancy U n d e r D i f fe ren t I l l u m i n a n t s 
In this experiment the goal was to verify that the C-values 
generated by the algorithm were indeed constant under differ­
ent illumination conditions. Therefore a simple method was 
used: the same scene was photographed and digitized under 
two different illuminants; the first was illuminated with white 
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Table 1: Comparison between the true C-values and the error 
of the estimated ones. 

The numbers in each box, from top to bottom, represent , and 
C3 respectively. A l l numbers were multiplied by a factor of 100. 

incandescent l ight (termed as Image # 1 ) and the second w i t h 
the same l ight source w i t h a yellow fi l ter in front of it (Image 
# 2 ) . 1 For each image, the a lgor i thm was run and C-values 
of the same region were recorded. The results appear in the 
upper por t ion of Figure 2. We also plot ted the recovered i l -
luminants as computed by the algor i thm (Figure 2 — center 
por t ion) , and the estimated reflectances in each area in bo th 
images (Figure 2 — bot tom por t ion) . It is clear f rom the ta­
ble and the plots that the C-values generated are very close, 
as are the estimated reflectances. In addi t ion, the estimated 
i l luminants do exhibi t curves which are close to approximat ing 
whi te and yellow i l luminants, respectively. Note that the es­
t imates of the reflectances, as well as the i l luminants, are not 
accurate due to the fact that the sample of "mater ia ls" is not 
r ich enough (there is only one mater ial ! ) . Nevertheless, the 
color descriptors are fair ly constant, indicat ing the robustness 
of this technique. 

6 Summary 
This paper dealt w i th the problem of color constancy, or the 
fact that the perceived color of surfaces tends to remain con­
stant despite changes in i l luminat ion that alter the intensities 
reflected off the surfaces. We have presented an a lgor i thm 
which generates color constant descriptors for different surfaces. 
There are two steps in the a lgor i thm: the first estimates the i l -
luminant present in the scene, and the second step makes use of 
the estimated i l luminant to generate the color descriptors. We 
have shown that by comput ing an image average reflectance, 
the a lgor i thm can estimate the i l luminant present in the scene 
and w i t h i t , produce color descriptors for each of the surfaces 
in the image. Al though the same materials may exhibit differ­
ent reflected intensities under different i l luminat ion condit ions, 
the a lgor i thm produces the same descriptors in each case. The 
main result of the algor i thm is that i t allows the treatment of 
surfaces independent of the spectral power of the l ight source 
affecting them. 
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