
Abst rac t 

Given a set of m observations on n variables, 
an 0(mn2) algorithm is proposed to find a ba-
sis of all affine relations between these variables 
satisfied by the observations. On a 25 variables 
example, this new algorithm is 130 000 times 
faster than the "all subsets" option for linear 
regression of the SAS package which is a non 
polynomial alternative. Extension to the cases 
where squares, ratios, products of pairs of vari­
ables or logarithms of such terms appear in the 
relations is straightforward and remains poly-
nomial. The method is first tested with data for 
several classical discoveries studied previously 
by the Bacon programs. Then it is added to the 
AutoGraphiX system for computer-aided graph 
theory thus making it entirely automated. To 
demonstrate the power of the resulting system, 
five novel relations (or conjectures) in graph 
theory are found, two of which pertain to math­
ematical chemistry. Three conjectures involve 
five invariants, which is more than in most 
propositions of graph theory. Proofs of two con­
jectures are also given. 

1 In t roduc t ion 
Given a set of observations of several variables, to find 
efficiently parsimonious relations that they satisfy is a 
basic problem in the study of scientific discovery [Lan-
gley et a/., 1987], [Simon et a/., 1997] and, possibly, in 
its enhancement. More generally, one may seek relations 
between a subset of the given set of variables. Enumer­
ating all subsets and considering them in turn reduces 
this problem to the former one, but entails a combinato­
rial explosion. The purpose of this paper is to show that, 
for large classes of relations, the latter problem can be 
solved in polynomial time. More precisely, a polynomial 
algorithm is proposed for finding a basis of all affine rela­
tions between the variables (or powers, ratios, products, 
or logarithms of them). This algorithm uses basic results 
of linear algebra, also exploited in data analysis, and in 
particular in principal component analysis [Pontier et a/., 

1990]. However, the purpose there, i.e., to explain differ­
ences between observations, is the reverse of ours, i.e., to 
find what properties the observations have in common. 

The method is described in the next section. In Sec­
t ion 3 it is applied to several classical discoveries al­
ready studied previously by the Bacon programs [Lang-
ley et al, 1987]. In Section 4, results of its embedding 
in the AutoGraphiX (AGX) system for computer-aided 
graph theory are presented. The resulting entirely au­
tomated system discovers five novel relations (or conjec­
tures) in graph theory, two of which pertain to math­
ematical chemistry. Three of these conjectures involve 
five invariants, which is more than in most propositions 
of graph theory. Conclusions are drawn in Section 5. 
Proofs of two among the five conjectures are given in 
the Appendix. 
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Centering variables, the first step of our algorithm, 
thus transforms the problem of finding affine relations 
into the problem of finding linear ones. 

Consider then the variance-covariance matrix V de­
fined by 

If the relation 

( i ) 

holds, then 

which means that if the linear relation (1) holds for 
the columns of X' it also holds for those of V. As V is 
symmetric, it st i l l holds for its lines. The second step of 
our algorithm is thus to compute V. 

The third and last step is to diagonalize V (with, how­
ever, some empty lines if there are relations). This can 
be done, by Gaussian elimination. In the resulting ma­
t r ix V, Dim(Im(V)) lines contain non-zero terms and 
correspond to independent variables. The remaining 
n — Dim(Im(V)) lines contain only zeroes and corre-
spond to dependent variables which may be expressed 
as linear combinations of the independent ones. These 
relations form a basis of the null-space of V. Using the 
init ial data one can then compute the right-hand sides 
of the corresponding affine relations. 

The case were a dependent variable is expressed as 
a monomial of several independent ones, instead of an 
affine expression is easily reduced to the previous one. 
Indeed, assume 

(2) 

where the et and / are constants. Taking logarithms, 
this relation becomes 

(3) 

So the method just described can be used to find ex­
ponents et (equal to 0 if does not appear in the mono­
mial) and the init ial data to f ind /. 

The proposed algorithm is illustrated on several ex­
amples in Section 3. 

2.2 E x t e n s i o n 
The two classes of relations described in the previous 
subsection can be easily and substantially enlarged by 
computing additional terms from the ini t ial data. The 
easiest case is to take, in addition to the given variables, -
all squares and products of pairs of them. Then one uses 

■ variables instead of n. The formulas 
have the form 

Ratios, higher powers than two or products of three vari­
ables may also be considered. If Xj is expressed as a 
monomial, sums or differences of variables may be taken 
as additional terms. 

2.3 C o m p l e x i t y 
The first step of the method, computing centered values 
involves computing , in 0(mn) time and subtracting 
from each f again in 0(mn). The second step, comput­
ing the variance-covariance matrix V, t a k e s t i m e . 
The third step, diagonalizing V by Gaussian elimination 
requires 0(n3) time. In order to avoid spurious relations, 
one must have m>n. Thus the overall complexity is in 

if one makes the reasonable assump­
tion that m is 0(n)). If squares and products of pairs of 
variables are added the complexity rises to . Such 
problems, wi th n moderate, are sti l l solvable in a rea­
sonable time. 

As an example for comparison, using linear regression 
allows at most one relation to be found at a time while 
our method finds a basis of al l the relations underlying 
the data. Furthermore, linear regression needs one vari­
able to be explained by the others, which means that 
a regression must be computed for each of the n — 1 
first variables to be explained by the next ones. To 
ensure that all relations are found, one cannot escape 
the "best-subset" criterion for each regression, thus try­
ing all combinations of variables, which has exponential 
complexity. Treating a 20 variables and 44 observations 
example wi th the SAS statistical software needs 10 sec­
onds while our system needs 0.0013 sec (on a Sun Ultra 
I, 140 MHz). Using 25 variables instead of 20 and sti l l 
44 observations, the time required by SAS increases to 
4 minutes and a half while our method only needs 0.002 
seconds (130 000 times faster). 

3 Rediscovering known laws 
3.1 Kepler's th i rd law 
Kepler's th i rd law is that where p denotes the 
period of a planet's orbit and d its average distance to 
the sun. As all those considered in this section, this law 
was rediscovered by one of the Bacon programs [Langley 
et al., 1987]. The computing time they use is much larger 
than with our method. Note, however, that the aim of 
these programs is different from that pursued here: i.e., 
to understand the reasoning which led to the discovery 
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rather than to find an efficient but computer-dependent 
way to discover the corresponding relation. 

A generator was used to produce the following four 
simulated observations of p and d (taking units such that 
ct = l ) : 

or, switching to logarithms, 

The corresponding variance-covariance matrix is 

Diagonalization leads to 

which shows that a relation of the form log(p) = 
holds. Then using we find ctf = 1.5, and an equiv­
alent form of the original relation, p — d1*5. Computing 
time is too small to be measured. 

3.2 I dea l -gas l a w 

The ideal gas law is PV = nRT where P is the pres­
sure (in Pascals), V the volume (in cubic meters), n the 
number of mo te and T the temperature (in Kelvins). 
R — 8.32 is the universal ideal gas constant. The genera­
tor gave simulated observations of P, V, n and T. These 
were then converted to the older units, to simulate the 
situation prevalent at the time of discovery, i.e., before 
absolute temperatures were used. Then the pressure p is 
measured in atmospheres, the volume v in liters and the 
t temperature in Celsius degrees. The conversion rules 
are P = 101325p, V = v/1000 and T = t+273.15. Using 
25 observations and the extended set of terms including 
squares and products of pairs of variables led to the re­
lation nt = -273.15n + 12.1785pt/ in less than 1/100 of a 
second. Converting back to the SI System units gives 
nT = 0.120192PV, which is an equivalent form of the 
law presented above. 

Note that this relation is even easier to find, using the 
SI System units, if we switch to the logarithms of the 
values; then an extended data set is not needed. 

Sixteen observations are enough and the variance-
covariance matrix for these data is 

Diagonalizing this matr ix becomes 

which shows that a relation of the form log(T) -
log(P) + log(F) - log(n) + ct holds. From the logarithms 
of the data, we find ct = 0.120192. So the equivalent 
form T = 0.120192PVn-1 of the ideal gas law is found 
instantaneously. 

3.3 N e w t o n ' s g r a v i t y l a w 
Newton's Law is that where m and M are the 
masses of two bodies, D the distance between them, F 
their force of attraction and the universal 
gravitational constant. The problem is formally very 
similar to the previous one, as one seeks a monomial 
involving three variables. 

The generator provided 25 simulated observations of 
F, m, M and D, then the system obtained from their 
logarithms the relations which is 
equivalent to the law given above. Again the derivation 
was instantaneous. 

In addition to this result, the system gave spurious 
laws, i.e., m+F = m, M + F = M and D + P = P. It 
is easy to recognize that they are incorrect, and due to 
numerical errors. A more careful scaling of units before 
computation avoids this error. 

3.4 O h m ' s l a w 
Ohms' law is that IL = rl + v where I denotes cur­
rent intensity, L inductance, r resistance and v tension. 
The generator provided 25 simulated observations of J, 
L, r and v. Using an extended data set wi th squares 
and products of pairs of variables, i.e., 14 terms (or 10 
when seeking for expression of a dependent variable as a 
monomial, because in that case sums of twice the same 
variable are redundant) the relation rl = —v + IL was 
found in less than 1/100 of a second. 

Note that using only the original observations would 
not have allowed to find this relation. 

4 F ind ing new relations in graph theory 
4.1 The AutoGraphiX system 
Several systems have been proposed for computer-added 
or automated discovery of relations in graph theory, 
prominent among which are Graph [Cvetkovic et a/., 
1981); [Cvetkovic and Simie, 1994], and Graffiti [Fajt-
lowicz, 1988]; [Fajtlowicz, 1998]. They work with graph 
invariants, i.e., quantities such as the number of ver-
tices, number of edges, stability number, chromatic num­
ber, radius, diameter, etc., (see [Berge, 1973] for unde-
fined terms) which do not depend on labeling of ver­
tices or edges. Recently, a new system, called Au­
toGraphiX (AGX) has been developed [Caporossi and 
Hansen, 1997]. Its basic idea is to consider the problem 
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of determining extremal graphs for some graph invari­
ant, possibly subject to constraints, and related problem 
such as refuting conjectures, as problems of combinato­
r ia l optimization defined on an infinite family of graphs. 
Then, powerful heuristics may be brought to bear to 
find presumably extremal graphs, of moderate size, from 
which much information may be gathered. More pre­
cisely, AGX addresses the following problems: 

( a )F ind a graph satisfying given constraints. Let 
denote invariants of a graph 

G and the values they should take. 
Consider the problem 

where denotes the set of graphs with n vertices, 
and n may be varied. Any graph for which / (G ) = 0 
satisfies the given constraints. 

(b) Find optimal or near optimal values for an invariant 
io(G) subject to constraints. Consider the problem 

where M is a sufficiently large constant. 
(c) Refute a conjecture, expressed as h(G) < g(G) 

where h(G) and g(G) are formulas depending on 
one or more invariants of G. Consider the problem 

If a graph G for which is found, the con­
jecture is refuted. 

(d) Suggest a conjecture. This can be done in various 
ways, which use parameterization on the number n 
of vertices and m of edges of G or other invariants. 
Surfaces of values for the invariant or formula un­
der study can be displayed graphically, which often 
suffices to obtain conjectures, and presumably ex­
tremal graphs can be studied, which gives further 
information. 

(e) Suggest a proof. Checking if presumably extremal 
graphs found are also obtained with simplified 
heuristics, such as e.g. local search with a single 
type of move may suggest ways to prove conjectures 
for all graphs, or for some classes of them, e.g., by 
showing that such a move can always be performed 
on any non-extremal graph and is an improving one. 

The heuristics used in AGX fit into the Variable Neigh­
borhood Search metaheuristic framework [Hansen and 
Mladenovic, 1998]. A local search routine is applied to 
G, which employs several types of moves: add or re­
move an edge, displace one or two edges, add or remove 
a pending vertex, insert a vertex in an edge, etc. Once a 
locally optimal graph G1 has been found, one considers 
a set of neighborhoods 

increasingly far from G1 and defined by addition or re-
moval of 1,2,...,kmax edges. A graph G2 in the neigh-
borhood . etc., is drawn at random and 
a local search performed leading to a graph G3. If G3 
has a better value than G1 the search is recentered there. 
AGX has been applied to a series of problems of graph 
theory, some of which pertain to mathematical chem­
istry [Caporossi and Hansen, 1997]; [Caporossi et a/., 
1998a]; [Cvetkovic et a t , 1998]; [Caporossi et a/., 1998b]; 
[Caporossi et a/., 1999]. 24 conjectures have been ob­
tained up to now, 11 of which have been proved and 
none of which has been refuted. In addition, AGX alone 
refuted 3 conjectures of Graffiti [Caporossi and Hansen, 
1997] and, together wi th some enumeration routines 6 
more [Pujol, 1998]. As described, AGX is a tool for 
computer-assisted discovery. However, addition of a rou­
tine implementing the algorithm for finding relations de­
scribed in Section 2 transforms it into an entirely auto­
mated system. Results obtained when doing so are next 
presented. 

4.2 A p r o p e r t y o f c o l o r - c o n s t r a i n e d t rees 
w i t h m i n i m u m i n d e x 

A tree is a bipartite graph, whose vertices may be col­
ored in black and white such that no pair of adjacent 
vertices have the same color. If the numbers of black and 
of white vertices are fixed the tree is color-constrained. 
In [Cvetkovic et a/., 1998] AGX is used to study color-
constrained trees extremal wi th respect to their index, 
or largest eigenvalue of their adjacency matrix. Six con­
jectures are obtained, and four of them proved. 

To explore further the extremal trees found, values of 
the following fifteen invariants were recorded: number 
n of vertices, number n1 of pending vertices, number m 
of edges, diameter D, radius r, stability number a (i.e., 
maximum number of pairwise non-adjacent vertices), av­
erage degree 5, average distance and sum of distances 
between pairs of vertices, energy (sum of the absolute 
values of the eigenvalues of the adjacency matrix), max­
imum degree, largest eigenvalue of the adjacency matrix, 
Hyperwiener index (sum of the squares of distances be­
tween pairs of vertices), Randic index x see below), and 
Chromatic number 

Then the algorithm of Section 2 was used to find a 
basis of affine relations on those invariants. In addition 
to well-known relations, such as TO = n — 1 and = 2 
which are valid for all trees, the unexpected following 
one was obtained 

(4) 
and the remaining 8 invariants are proved to be linearly 
independant from any of the considered ones. 

This result can also be expressed as follows. 

Conjecture 1. For all color-constrained trees with 
minimal index 

(5) 
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Furthermore, AGX was used to see whether this con­
jecture could be extended to al l trees. Minimizing and 
maximizing the left-hand side of (4) then led to the fol­
lowing results. 

Con jec ture 2* For all trees 

(6) 

Let denote the largest integer smaller or equal to a. 

Conjecture 3. For all trees 

(7) 

Conjecture 2 is proved in the Appendix. 

4 .3 T w o b o u n d s f o r t h e c o n n e c t i v i t y i n d e x 
o f c h e m i c a l g r a p h s 

Chemical graphs are extensively used to represent hydro-
carbons. Vertices correspond to carbon atoms and edges 
to bonds between them (hydrogen atoms are usually not 
represented as their number and bonds are uniquely de­
fined). Consequently the maximum vertex degree is 4. 
Moreover, chemical graphs are connected. The connec­
t iv i ty index (or Randic index) [Randil, 1975] has been 
introduced as a measure of molecular branching. It is 
defined as follows. Let denote an edge of a graph 
G, dj and dj the degrees of its end-vertices. Then the 
weight of that edge is and the connectivity 
index x{G) *s the sum of the weights of all edges of G. 
This index is one of the most frequently used molecu­
lar structure-descriptors, and the only one to which two 
books [Kier and Hall, 1976]; [Kier and Hall, 1986] and 
numerous articles have been devoted. 

In [Caporossi et al., 1998b] chemical trees wi th ex­
tremal connectivity index are studied, based on results 
of AGX, and folly characterized. Applying AGX, wi th 
the relation-finding routine, to chemical graphs wi th pre­
sumably minimal connectivity index, did at first give no 
relations. However, considering the set of local minima 
among these graphs gave two new relations: 

Con jec tu re 4. For all chemical graphs 

(8) 

Con jec ture 5. For all chemical graphs 

(9) 

Conjecture 4 is proved in the Appendix. 

5 Concluding remarks 
An algorithm for finding automatically from observa­
tions of a set of variables a basis of affine relations be­
tween these variables, or products, ratios or powers of 
them, or between logarithms of such terms has been 
presented. As it is polynomial in the number of vari­
ables considered, the combinatorial explosion encoun­
tered when each potential relation is considered in turn 
is avoided. 

Moreover, adding a routine implementing this algo­
r i thm to the system AGX led to an entirely automated 
system for finding relations in graph theory. Its use is i l ­
lustrated by the derivation of five novel conjectures, two 
of which pertain to mathematical chemistry. Many more 
applications are expected in the near future. 

A Proofs of two conjectures 
T h e o r e m 1 (Con jec tu re 2 ) . For all trees with stabil­
ity number , m edges, ni pending vertices, diameter D 
and radius r 

Proof . Recall that in a tree is even and 
if JO is odd. Hence, D - 2r = -(D mod (2)). 

Assume first that D is even. Define the star of a vertex 
Vi to be the set of edges incident wi th . Clearly, stars 
of vertices of a stable set are disjoint. Consider a maxi­
mum stable set S wi th pending vertices and _ inner 
vertices. Then, and 

Assume then that D is odd. Consider a path P of 
length D. Either only one end vertex of P belongs to 
S or there is a pair of consecutive vertices 
P which do not belong to 5, and the edge 
not belong to the star of any vertex of 5. In both cases 

T h e o r e m 2 (Con jec tu re 4 ) . For all chemical graphs 
G with connectivity index x (G) , n1 pending vertices and 
m edges 
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obtained by counting vertices and degrees. These 
equations are clearly independent. Solving for 

and substituting y14 and 1/44 
in the objective function 

(10) 

leads to the relation 

As are non-negative and 
have positive coefficients in (11) the result follows. 

Conjecture 5 can be proved in a similar way. 
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