Computer Science > Machine Learning
[Submitted on 15 Nov 2022]
Title:FedTune: A Deep Dive into Efficient Federated Fine-Tuning with Pre-trained Transformers
View PDFAbstract:Federated Learning (FL) is an emerging paradigm that enables distributed users to collaboratively and iteratively train machine learning models without sharing their private data. Motivated by the effectiveness and robustness of self-attention-based architectures, researchers are turning to using pre-trained Transformers (i.e., foundation models) instead of traditional convolutional neural networks in FL to leverage their excellent transfer learning capabilities. Despite recent progress, how pre-trained Transformer models play a role in FL remains obscure, that is, how to efficiently fine-tune these pre-trained models in FL and how FL users could benefit from this new paradigm. In this paper, we explore this issue and demonstrate that the fine-tuned Transformers achieve extraordinary performance on FL, and that the lightweight fine-tuning method facilitates a fast convergence rate and low communication costs. Concretely, we conduct a rigorous empirical study of three tuning methods (i.e., modifying the input, adding extra modules, and adjusting the backbone) using two types of pre-trained models (i.e., vision-language models and vision models) for FL. Our experiments show that 1) Fine-tuning the bias term of the backbone performs best when relying on a strong pre-trained model; 2) The vision-language model (e.g., CLIP) outperforms the pure vision model (e.g., ViT) and is more robust to the few-shot settings; 3) Compared to pure local training, FL with pre-trained models has a higher accuracy because it alleviates the problem of over-fitting. We will release our code and encourage further exploration of pre-trained Transformers and FL.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.