Computer Science > Data Structures and Algorithms
[Submitted on 27 Jun 2022]
Title:Faster Exponential-Time Approximation Algorithms Using Approximate Monotone Local Search
View PDFAbstract:We generalize the monotone local search approach of Fomin, Gaspers, Lokshtanov and Saurabh [this http URL 2019], by establishing a connection between parameterized approximation and exponential-time approximation algorithms for monotone subset minimization problems. In a monotone subset minimization problem the input implicitly describes a non-empty set family over a universe of size $n$ which is closed under taking supersets. The task is to find a minimum cardinality set in this family. Broadly speaking, we use approximate monotone local search to show that a parameterized $\alpha$-approximation algorithm that runs in $c^k \cdot n^{O(1)}$ time, where $k$ is the solution size, can be used to derive an $\alpha$-approximation randomized algorithm that runs in $d^n \cdot n^{O(1)}$ time, where $d$ is the unique value in $d \in (1,1+\frac{c-1}{\alpha})$ such that $\mathcal{D}(\frac{1}{\alpha}\|\frac{d-1}{c-1})=\frac{\ln c}{\alpha}$ and $\mathcal{D}(a \|b)$ is the Kullback-Leibler divergence. This running time matches that of Fomin et al. for $\alpha=1$, and is strictly better when $\alpha >1$, for any $c > 1$. Furthermore, we also show that this result can be derandomized at the expense of a sub-exponential multiplicative factor in the running time.
We demonstrate the potential of approximate monotone local search by deriving new and faster exponential approximation algorithms for Vertex Cover, $3$-Hitting Set, Directed Feedback Vertex Set, Directed Subset Feedback Vertex Set, Directed Odd Cycle Transversal and Undirected Multicut. For instance, we get a $1.1$-approximation algorithm for Vertex Cover with running time $1.114^n \cdot n^{O(1)}$, improving upon the previously best known $1.1$-approximation running in time $1.127^n \cdot n^{O(1)}$ by Bourgeois et al. [DAM 2011].
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.