Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 12 Oct 2023 (v1), last revised 29 Jan 2025 (this version, v2)]
Title:Fast Word Error Rate Estimation Using Self-Supervised Representations for Speech and Text
View PDF HTML (experimental)Abstract:Word error rate (WER) estimation aims to evaluate the quality of an automatic speech recognition (ASR) system's output without requiring ground-truth labels. This task has gained increasing attention as advanced ASR systems are trained on large amounts of data. In this context, the computational efficiency of a WER estimator becomes essential in practice. However, previous works have not prioritised this aspect. In this paper, a Fast estimator for WER (Fe-WER) is introduced, utilizing average pooling over self-supervised learning representations for speech and text. Our results demonstrate that Fe-WER outperformed a baseline relatively by 14.10% in root mean square error and 1.22% in Pearson correlation coefficient on Ted-Lium3. Moreover, a comparative analysis of the distributions of target WER and WER estimates was conducted, including an examination of the average values per speaker. Lastly, the inference speed was approximately 3.4 times faster in the real-time factor.
Submission history
From: Chanho Park [view email][v1] Thu, 12 Oct 2023 11:17:40 UTC (150 KB)
[v2] Wed, 29 Jan 2025 11:28:34 UTC (171 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.