
Expressive Power of Tree and String Based Wrappers

Daisuke Ikeda
Computing and Communications Center,

Kyushu University, Fukuoka 812-8581, Japan
daisuke@cc.kyushu-u.ac.jp

Yasuhiro Yamada
Graduate School of Information Science

and Electrical Engineering,
Kyushu University, Fukuoka 812-8581, Japan

yshiro@matu.cc.kyushu-u.ac.jp

Sachio Hirokawa
Computing and Communications Center,

Kyushu University, Fukuoka 812-8581, Japan
hirokawa@cc.kyushu-u.ac.jp

Abstract

There exist two types of wrappers: the string based
wrapper such as the LR wrapper, and the tree
based wrapper. A tree based wrapper designates
extraction regions by nodes on the trees of semi-
structured documents. The tree based wrapper
seems to be more powerful than the string based
one. There exist, however, many HTML documents
on the Web such that a standard tree based wrap-
per fails to extract contents because they are struc-
tured by presentational tags, punctuation symbols,
and white spaces. Moreover, some of such docu-
ments use multi-byte characters for structuring. To
treat some of such documents, we propose auto-
matic wrapper generation based on common sub-
string detection and to use input documents with-
out any modification. In this framework, a part
of text elements including white spaces and multi-
byte characters can be a part of a wrapper. We
show the superiority such wrappers to usual wrap-
pers created after document are parsed and modi-
fied. However, there still exist HTML documents
such that wrappers with text elements fail to extract
contents. Thus, we propose another class of wrap-
pers, called the regional tree wrapper, which utilize
the tree structures of input documents as well as ad-
dressing functions on strings.

1 Introduction

There are useful information hidden in enormous documents
on the Web. It is difficult, however, to restructure them and
integrate contents on different sites because the documents
do not have rigid structures like database systems. To ex-
tract contents from semi-structured documents on the Web,
we need the wrapper which is a procedure to divide contents
according to the their types and to extract them.

Due to the enormous pages on the Web, writing wrappers
manually is tedious and error-prone. There have been a lot
of researches on semi- or full- automatic wrapper genera-
tion algorithms: some of them are machine learning based
approaches using training examples [Cohen and Fan, 1999;
Cohen and Jensen, 2002; Kushmerick et al., 1997; Muslea
et al., 1998; Sakamoto et al., 2001] and some of them find
regularities among given documents [Embley et al., 1999;
Buttler et al., 2001; Crescenzi et al., 2001; Yamada et al.,
2001; 2002]. XWrap [Liu et al., 2001] and Lixto [Baumgart-
ner et al., 2001] provide graphical user interfaces to indicate
a region which should be extracted. A good survey of data
extraction from the Web is found in [Laender et al., 2002].

Some of these algorithms first find substrings common to a
set of given documents [Crescenzi et al., 2001; Yamada et al.,
2001; 2002]. Common substrings correspond to templates
of documents, so we then identify the regions of contents.
Finding common substrings framework enables an algorithm
to generate wrappers full-automatically. Another benefit of
such algorithms is independence from markup and natural
languages. For example, consider the following example.

<tag> Daisuke Ikeda </tag>
<tag> Yasuhiro Yamada</tag>

This is a part of HTML document. “ ” is a multi-byte char-
acter and a part of a text element. This is used for an item
heading, so it should be treated as a part of a template. An
algorithm based on common substrings easily deals with tem-
plates which contains tags and parts of text elements.

The above “ ” example seems to be appropriate for wrap-
pers based on the string. Each name is extracted if it is sur-
rounded between “<tag> ” and “</tag>.” The other
type of wrapper is based on the tree structure. Selecting a
class of wrapper is important. A class of simple wrappers is
easy to be generated but can not describe many Web sites.
A class of complex wrappers can deal with large number of
Web sites but it is difficult to generate such a wrapper auto-
matically. We call a string (resp. tree) based wrapper a string
wrapper (resp. tree wrapper) for short.

Algorithms which generate string wrappers treat a semi-
structured document just as a string [Ashish and and
Knoblock, 1997; Crescenzi et al., 2001; Kushmerick et al.,
1997; Lerman et al., 2001; Yamada et al., 2001; 2002]. Basi-
cally, these wrappers consist of strings surrounding contents
which are variable. The simplest string wrapper is an LR
wrapper [Kushmerick et al., 1997] consisting of a set of pairs
of left and right delimiters. In other words, a pair of delimiters
surrounds one type of data. The string wrapper is too simple
to describe complex structures such as tree structures1.

Algorithms for tree wrappers utilize the tree structure
of semi-structured documents [Baumgartner et al., 2001;
Buttler et al., 2001; Liu et al., 2001; Muslea et al., 1998;
Sakamoto et al., 2001]. Basically, such algorithms find nodes
on a tree which designate the regions of data to be extracted.
Some of them are machine learning and require training ex-
amples [Cohen and Fan, 1999; Cohen and Jensen, 2002;
Sakamoto et al., 2001]. The algorithm in [Buttler et al., 2001]
utilizes regularities of trees, such as depths of contents nodes,
and find record boundaries automatically.

In this paper, we discuss expressive power of wrappers. We
consider full automatic wrapper generation and assume that a
part of text elements can be a part of template. Many string
and tree wrappers are studied in this viewpoint [Kushmerick,
2000]. But, considered wrappers are only string ones.

In general, the tree wrapper seems to be more expressive
than the string wrapper if input semi-structured documents
are well-structured like XML documents. In this case, it is
enough for the tree wrapper to point a node or set of nodes
to be extracted. However, still huge amount of documents on
the Web are HTML files and many of them are ill-structured.
In fact, many HTML files allow for different types of contents
or multiple contents to be mixed in one structure tag. These
contents are separated by presentational layout tags such as
<p> and
, white spaces2, and punctuation symbols.

For such ill-structured documents, pointing nodes on a tree
structure is not sufficient and we need to divide a portion in-
side one tag into more small pieces according to their data
type. Semi automatic or interactive methods can deal with
such documents. For example, Lixto [Baumgartner et al.,
2001] has a predicate subtext, so it describes contents for-
matted such characters. However, we want to extract data
from such documents automatically. Thus, we pay attentions
to both string and tree wrappers, especially string wrappers
which can include any characters, such such as multi-byte
characters, white spaces, comment tags, and layout tags.

An Emacs lisp package “shimbun3” also supports the im-
portance of white spaces and comments. The package enables
some mail/news readers to see Web pages in a mail/news
manner. Target Web pages of the package are those on on-
line news sites4, mail archives, or bulletin boards. In other

1Some classes of wrappers considered in [Kushmerick, 2000]
and RoadRunner [Crescenzi et al., 2001] allow nesting and repe-
tition to describe the complex structure.

2A white space denotes a space, tab, or new-line character.
3http://emacs-w3m.namazu.org/
4The news site is the main target of “shimbun” which stands for

a new paper in Japanese.

words, shimbun is a set of wrappers written by hand. White
spaces and comments are used to indicate regions of contents
in many wrappers in shimbun package.

This paper is organized as follows: First, we introduce the
LR wrapper in Section 2 in the framework of common sub-
string detection. In this section, we show sample LR wrap-
pers which are created from real data on the Web and include
characters of text elements. Then, we give some definitions
of tree wrappers in the literatures in Section 3. In this sec-
tion, we show some HTML files gathered from the Web such
that they are not applicable to the string wrapper without a
part of text elements and even to the tree wrapper. Finally,
we propose a new wrapper class which works well for such
HTML files. A proposed wrapper, we call it a regional tree
wrapper, have both features from the string wrapper and the
tree wrapper.

2 Wrapper Generation by Common Parts
Detection

In this section, first we introduce the LR wrapper according
to [Kushmerick et al., 1997; Kushmerick, 2000]. Then, we
define the wrapper generation problem as common substring
detection. This framework enables a wrapper generation al-
gorithm to work full-automatically. The wrapper is very sim-
ple and seems to be week for real and diverse data on the
Web. However, we show by example that the LR wrapper is
enough powerful if we treat input documents as is.

We assume some alphabet Σ with fixed size for each set of
input documents.

Definition 1 ([Kushmerick et al., 1997]) An LR wrapper is
a K-tuple (l1, r1, . . . , lK , rK), where K is some constant and
li, ri ∈ Σ∗ for any 1 ≤ i ≤ K .

Each li (resp. ri) is called a left (resp. right) delimiter.
Although any strings can be a delimiter by Definition 1,

many implementations restrict a delimiter to be a sequence of
tags. There were no such restrictions in [Kushmerick et al.,
1997; Kushmerick, 2000], but only the ASCII character set
was considered as Σ. On the other hand, Yamada et al. im-
plemented a wrapper generation algorithm in which any char-
acters can be parts of a delimiter [Yamada et al., 2002] and
these characters are not restricted to the ASCII character set.
They use Unicode5 as a character set, so that the algorithm
deals with any documents coded in Unicode. Moreover, the
algorithm can generate wrappers including a part of text ele-
ments which can be written in any of natural languages if the
part is coded in Unicode (see Table 1).

A pattern is a string over Σ and V , where V is infinite set
of variables. Let p = w0x1w1 · · ·xmwm be a pattern, where
xi ∈ V (1 ≤ i ≤ m) and wi ∈ Σ∗(0 ≤ i ≤ m). Then
the sequence s = (w0, . . . , wm) of strings over Σ is called a
template.

Definition 2 The wrapper generation problem is, given a set
of positive documents, to find a template for the set.

Unlike the machine learning of pattern languages, we do not
consider variables.

5http://www.unicode.org/

According to this framework, Yamada et al. developed
two automatic wrapper generation algorithms [Yamada et al.,
2001; 2002]. Both algorithms find pairs of delimiters and
generate LR wrappers. These delimiters are parts of a tem-
plate. Both algorithms do not require any training examples
due to the algorithm developed in [Ikeda et al., 2001]. An
output of the algorithm corresponds to a set of training ex-
amples. In other words, the algorithm in [Ikeda et al., 2001]
automatically indicates positions of the contents in given doc-
uments.

We briefly explain how the algorithm in [Ikeda et al., 2001]
works. It outputs a pair (n, a) of integers, where n ≥ 2 is a
length of strings and 0 ≤ a ≤ 100 is a percentage. The al-
gorithm finds a common parts of a given set of documents. A
common parts is expressed as the following: counts all sub-
strings with length n of given documents, sorts them by their
occurrences in decreasing order, and then substrings in the
first a percent constitute common parts. The algorithm de-
cides appropriate (n, a) automatically using the new notion
“alternation counts.” An alternation count on some (n, a) is
the number of boundaries between common an uncommon
parts.

The algorithm initially sets (n, a) = (2, 1), then it in-
creases n or a by one. It compares three alternation counts
on current (n, a), (n, a+1), and (n+1, a), then chooses one
of them provided the smallest alternation count. If the current
value gives the smallest alternation count, then the algorithm
stops and outputs current (n, a).

Created wrappers by both algorithms [Yamada et al., 2001;
2002] are string based, but they are different from standard
string wrappers on the following points: (1) These algorithms
treat input documents as-is. No modification on input docu-
ments is applied. Comments and tags with some spell mistake
can be left. Useful information hidden in comment tags or in
attributes of tags were found by these algorithms. (2) The
search space of delimiters is not restricted to a set of tag
sequences. Both algorithms do not utilize the grammar of
any markup languages. Instead, they try to find substring
common to the documents. Generated delimiters can include
strings in contents parts of HTML documents. In fact, some-
times, such strings were multi-byte characters if given docu-
ments contains such characters (see Table 1).

In the viewpoint of expressiveness, there are important
difference between two algorithms in [Yamada et al., 2001;
2002]. A delimiter considered in [Yamada et al., 2002] can
include white spaces. On the other hand, the algorithm in [Ya-
mada et al., 2001] converts successive white spaces into a
single space, so that tab and new-line characters were ig-
nored in the result. In HTML and XML, a sequence of suc-
cessive white spaces equals to a single space, so a user can
add white spaces for readability of a document. For example,
“<tagA>Hello</tagA>” is the same as the following no-
tation:

<tagA>
Hello

</tagA>

Therefore, most algorithms ignore successive white spaces
when they parse HTML/XML files. This difference yields

interesting pairs of delimiters such as “ (” and “)</p>”.
These delimiters were found in the data set of XML files gath-
ered from “Mainichi INTERACTIVE NewsML”6. However,
expressive power of white spaces was not discussed in [Ya-
mada et al., 2002].

Table 1 is the wrapper created on HTML documents gath-
ered from “Sankei Web,”7 which is one of the major online
news sites in Japan. We see that an HTML page on online
news outlet contains an instance of an article record. In gen-
eral, an article contains the body of the article, the date and
hour, the heading, and the credit. Sometimes, additional sub-
headings appear. “ ” in the left delimiter of Headline is a
multi-byte character.

From Table 1, we see that white spaces play an impor-
tant role. For example, the body of an article of this site is
surrounded by “<BLOCKQUOTE>\n\n” and “<p>\n\n\n.”
The right delimiter shows that two blank lines after a <p> tag
are used to indicate the end of an article.

A weakness of the LR wrapper is shown in Example 1,
where “Ikeda” and “Yamada” are the contents but “COM-
MERCIAL” is not.

Example 1

<tagA>
Ikeda
Yamada

</tagA>
...

COMMERCIAL

A string wrapper generation algorithm can not generate a
wrapper extracting the above contents because attribute val-
ues of “href” are different from each other and delimiters turn
out to be “">” and “.” But these delimiters extract
“COMMERCIAL” too.

One solution for the above example is to use white spaces
and don’t-care symbol “*”, then we have the pair of delimiters
“\n ” and “.” However, this does
not work well if all <a> tags have the same depth in the
tree representation, or the indentation is not used. Another
solution is to use the tree structure described in Section 3.

3 Tree Wrappers
In this section, we consider expressive power of tree wrappers
and some of their limitations. Basically, such a tree wrapper
recognizes regions by a node of the tree structure. A node
is represented by the path expression, which is a sequence
of tags from the root to the correspondent tag. A standard
expression is XML Path Language (XPath)8. XPath is a lan-
guage for addressing parts of an XML document, designed to
be used by XSLT. For example, the contents in Example 1 of
Section 2 are represented by “tagA/a.”

Tree wrappers seem to be more powerful than string wrap-
pers. In fact, any string wrappers proposed in the literature
can be expressed by some tree wrapper if input documents
are well-structured and one tag at the lowest level does not

6http://www.mainichi.co.jp/digital/newsml/
7http://www.sankei.co.jp/
8http://www.w3.org/TR/xpath

Table 1: Wrapper created from “Sankei Web.” Each row consists of left (upper) and right (bellow) delimiters. A row corresponds
to one data type

Data Type Created wrapper
 Headline

\nSub headline

<BLOCKQUOTE>\n\nBody text
<p>\n\n\n

contain several types of data simultaneously. However, there
are many HTML files which do not obey the above assump-
tion.

Figure 1 is a simplified search result from “Google”9. In-
dentation is for readability. The whole result is surrounded
by “<p class="g">” and “</p>.” The node “p/a” cor-
responds to the page title and some words in the title are em-
phasized by bold face if they are query words. Next, the re-

<p class="g">

KEYWORD-TITLE OF A PAGE

KEYWORD-....,

including KEYWORD-

Description:

Foundation which....
...

</p>

Figure 1: One search result on Google

sult contains some parts of the page with the query words’
highlighting. In Figure 1, two lines just bellow correspond to that. We can also find such a
structure at “Lycos”10.

It is impossible to represent these two lines by a simple
node representation because con-
tains another types of data. tags increase the difficulty
to represent desired nodes because they are used to empha-
size query words and so the number of appearance of query
words is not fixed in advance.

To represent these two lines precisely, we need an addi-
tional substring function that can point them by “from just
after to just before the second oc-
currence of
,” or a span function that can point them
“from the first child of to the previ-
ous node of .”

Next, we consider an article file on “washingtonpost.com –

9http://www.google.com/
10http://www.lycos.com/

News Front –11.” In each article file, a heading of the article is
in the title tag like “<title> Article’s Heading (washing-
tonpost.com)</title>.” “(washingtonpost.com)” is im-
movable, that is, all title tags contain it, while Article’s Head-
ing is variable. Thus, it is necessary for a wrapper to extract
the part “Article’s Heading” only. However, it is impossi-
ble for the tree wrapper without string based functionalities.
Articles on “Mainichi Shimbun”12 also have title tags line
<title>Mainichi INTERACTIVE heading</title>.

We see the date of the article at the end of the article’s body
in an article of many news sites, like the following example.
This is taken from “Mainichi Shimbun.”

Example 2

...
<p> PARAGRAPH </p>
<p> PARAGRAPH </p>
<p> [Mainichi 03/05] (2003-3-5-22:56) </p>

The pair “ (” and “)</p>” of delimiters extracts the date
and hour of an article, such as “2003-3-5-22:56.” On the
other hand, “03/05” part is not extracted. Because these files
are gathered in a day and this part of every file is constantly
“03/05,” so “03/05” is treated as a part of structures.

In addition to Mainichi Shimbun, we also find similar arti-
cles on “YOMIURI ON-LINE”13 and “asahi.com”14.

Next, we again consider result pages dynamically created
at search engines. In a result page of “Yahoo!”15 and “Ly-
cos”, the short description of a page follows “ -”. Such a
heading symbol is often used for readability. The symbol “ ”
in Table 1 is also such a heading symbol. We want to remove
these symbols from the contents since such heading symbols
have nothing to do with the contents. “AltaVista”16 also used
“URL:” to show the URL for a page17.

From above observations, we know that there two types
of mixture in one tag. One is mixture of different types of
data, such as the date following a news article. The other is

11http://www.washingtonpost.com/
12http://www.mainichi.co.jp/
13http://www.yomiuri.co.jp/
14http://www.asahi.com/
15http://www.yahoo.com/
16http://www.altavista.com/
17Currently, AltaVista does not use such symbols.

mixture of data and a part of templates, such as “(washing-
tonpost.com).” It is difficult to divide different types of data
automatically. So, we only consider the latter case.

Some algorithms for the tree wrapper in the literature can
deal with such templates in a text elements. For example,
Lixto [Baumgartner et al., 2001] has a predicate subtext to
extract substrings from a text element. But, it is an interac-
tive wrapper generation method and regions to be extracted
are specified by a user. The authors do not know a wrap-
per generation algorithm which generates a tree wrapper and
treats a part of text elements as a part of the wrapper full-
automatically.

4 Combining String and Tree Wrappers
In the previous two sections, we described advantages and
disadvantages of both string and tree wrappers. In this sec-
tion, we introduce another wrapper class which comprises
these two wrapper classes.

As described in Section 3, we need additional substring and
span functions which are used to specify parts of a node in-
stead of the entire node. Therefore, a subset of XML Pointer
Language (XPointer)18 is a good candidate for such a class of
wrappers.

XPointer is the language to be used as the basis for a frag-
ment identifier for any URI reference. XPointer have func-
tions to address a range of nodes as well as those to address
a node. XPointer also have string based functions to indicate
a range of nodes. These functions are enough powerful to
handle documents described in this paper.

For a string x, a substring w of x, and an integer i (1 ≤ i ≤
|x|), a left (resp. right) position of w on x is the first index
j + |w| − 1 (resp. j) such that x[j..j + |w| − 1] = w. For
example, consider a string wlxwr, where x is a content and
wl, wr are delimiters. x is pointed by the right of w l and the
left of wr .

For a node n and a string w, a left (resp. right) position
of w under n is a left (resp. right) position of w on the string
defined by n.

We introduce a region to express a fragment. A region is a
pair (l, r) of nodes, positions, or their combination. If l (resp.
r) is a position, it is a left (resp. right) position. Now we
define a regional tree wrapper as follows.

Definition 3 (regional tree wrapper) A regional tree wrap-
per is a set of rules, where a rule is either is a node or region.

The semantic of regional tree wrapper is as follows. If a rule
is a node, the contents under the node are extracted. For a re-
gion (l, r), it points the whole string from a node or position l
to a node or position r.

5 Conclusion
We discussed expressive power of string and tree based wrap-
pers according to the framework of common substring detec-
tion. Especially, we focused on string wrappers with a part of
text elements including white spaces and multi-byte charac-
ters. We showed HTML files to which standard tree wrappers

18http://www.w3.org/TR/xptr

are not applicable. Then, we proposed the regional tree wrap-
per which comprises both string and tree wrappers.

The regional tree wrapper is a small subset of XPointer.
XPointer is a rich language, so it might have some functions
or definitions which are useless for the purpose of wrapper
generation. It is important future works to prove expressive
power of the proposed class of wrappers by theoretically and
empirically.

References
[Ashish and and Knoblock, 1997] Naveen Ashish and Craig

Knoblock. Wrapper Generation for Semi-structured Inter-
net Sources. In Proceedings of Workshop on Management
of Semistructured Data, 1997.

[Baumgartner et al., 2001] Robert Baumgartner, Sergio
Flesca, and Georg Gottlob. Visual Web Information
Extraction with Lixto. In Proceedings of the 27th
International Conference on Very Large Data Bases,
pages 119–128, September, 2001.

[Buttler et al., 2001] David Buttler, Ling Liu, and Calton
Pu. A Fully Automated Object Extraction System for
the World Wide Web. In Proceedings of the 21th Inter-
national Conference on Distributed Computing Systems,
pages 361–370, 2001.

[Cohen and Fan, 1999] William W. Cohen and Wei Fan.
Learning Page-Independent Heuristics for Extracting Data
from Web Pages. In Proceedings of the 8th International
World Wide Web Conference, 1999.

[Cohen and Jensen, 2002] William W. Cohen and Lee S.
Jensen. A Structured Wrapper Induction System for Ex-
tracting Information from Semi-structured Documents. In
Proceedings of IJCAI 2001 Workshop on Adaptive Text Ex-
traction and Mining, 2001.

[Crescenzi et al., 2001] Valter Crescenzi, Giansalvatore
Mecca, and Paolo Merialdo. RoadRunner: Towards
Automatic Data Extraction from Large Web Sites. In
Proceedings of the 27th International Conference on Very
Large Data Bases, pages 109–118, September, 2001.

[Embley et al., 1999] David W Embley, Yuan Jiang, and
Yiu-Kai Ng. Record-Boundary Discovery in Web Doc-
uments. In Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, pages 467–
478, 1999.

[Ikeda et al., 2001] Daisuke Ikeda, Yasuhiro Yamada, and
Sachio Hirokawa. Eliminating Useless Parts in Semi-
structured Documents using Alternation Counts. In Pro-
ceedings of the 4th International Conference on Discov-
ery Science, Lecture Notes in Artificial Intelligence,
Vol. 2226, pages 113–127, Springer-Verlag, November,
2001.

[Kushmerick, 2000] Nicholas Kushmerick. Wrapper Induc-
tion: Efficiency and Expressiveness. Artificial Intelli-
gence, Vol. 118, pages 15–68, 2000.

[Kushmerick et al., 1997] Nickolas Kushmerick, Daniel S.
Weld and Robert B. Doorenbos. Wrapper Induction for

Information Extraction. In Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence, pages
729–737, August, 1997.

[Laender et al., 2002] Alberto H. F. Laender, Berthier A.
Ribeiro-Neto, Altigran S. da Silva and Juliana S. Teixeira,
Automatic Data Extraction from Lists and Tables in Web
Sources. SIGMOD Record Vol. 31, No. 2, pages 84–93,
2002.

[Lerman et al., 2001] Kritina Lerman, Craig Knoblock and
Steve Minton. Automatic Data Extraction from Lists and
Tables in Web Sources. In Proceedings of IJCAI 2001
Workshop on Adaptive Text Extraction and Mining, 2001.

[Liu et al., 2001] Ling Liu, Calton Pu, and Wei Han.
XWRAP: An XML-Enabled Wrapper Construction Sys-
tem for Web Information Sources. In Proceedings of
the 16th International Conference on Data Engineering,
pages 611–621, 2000.

[Muslea et al., 1998] Ion Muslea, Steve Minton, and Craig
Knoblock. STALKER: Learning Extraction Rules for
Semistructured Web-based Infomation Sources. In Pro-
ceedings of AAAI-98 Workshop on AI and Information In-
tegration, pages 74–81, 1998.

[Sakamoto et al., 2001] Hiroshi Sakamoto, Hiroki Arimura,
and Setsuo Arikawa. Extracting Partial Structures from
HTML Documents. In Proceedings of the 14th Interna-
tional Florida Artificial Intelligence Research Symposium
(FLAIRS’2001): Knowledge Discovery and Data Mining,
AAAI Press, pages 264–268, 2001.

[Yamada et al., 2001] Yasuhiro Yamada, Daisuke Ikeda, and
Sachio Hirokawa. SCOOP: A Record Extractor with-
out Knowledge on Input. In Proceedings of the 4th In-
ternational Conference on Discovery Science, Lecture
Notes in Artificial Intelligence, Vol. 2226, pages 428–487,
Springer-Verlag, November, 2001.

[Yamada et al., 2002] Yasuhiro Yamada, Daisuke Ikeda, and
Sachio Hirokawa. Automatic Wrapper Generation for
Multilingual Web Resources. In Proceedings of the 5th
International Conference on Discovery Science, Lecture
Notes in Computer Science, Vol. 2534, pages 332–339,
Springer-Verlag, November, 2002.

