As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
With the rapidly growing amount of biomedical literature it becomes increasingly difficult to find relevant information quickly and reliably. In this study we applied the word2vec deep learning toolkit to medical corpora to test its potential for improving the accessibility of medical knowledge. We evaluated the efficiency of word2vec in identifying properties of pharmaceuticals based on mid-sized, unstructured medical text corpora without any additional background knowledge. Properties included relationships to diseases (‘may treat’) or physiological processes (‘has physiological effect’). We evaluated the relationships identified by word2vec through comparison with the National Drug File – Reference Terminology (NDF-RT) ontology. The results of our first evaluation were mixed, but helped us identify further avenues for employing deep learning technologies in medical information retrieval, as well as using them to complement curated knowledge captured in ontologies and taxonomies.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.