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Abstract

In this paper we present a system which learns to
recognize objects through interaction by exploit-
ing the principle of sensorimotor coordination. The
system uses a learning architecture which is com-
posed of reactive and deliberative layers. The re-
active layer consists of a database of behaviors that
are modulated to produce a desired behavior. In this
work we have implemented and installed in our ar-
chitecture an object manipulation behavior inspired
by the concept that infants learn about their en-
vironment through manipulation. While manipu-
lating objects, both proprioceptive data and exte-
roceptive data are recorded. Both of these types
of data are combined and statistically analyzed in
order to extract important parameters that distinc-
tively describe the object being manipulated. This
data is then clustered using the standard k-means
algorithm and the resulting clusters are labeled.
The labeling is used to train a radial basis function
network for classifying the clusters. The perfor-
mance of the system has been tested on a kinemati-
cally complex walking robot capable of manipulat-
ing objects with two legs used as arms, and it has
been found that the trained neural network is able
to classify objects even when only partial sensory
data is available to the system. Our preliminary
results demonstrate that this method can be effec-
tively used in a robotic system which learns from
experience about its environment.

1 Introduction

Recently, the psychological point of view that grants the body
a more significant role in cognition has also gained attention
in spatial cognition theory. Proponents of this approach claim
that we have to deal with and understand a body that needs a
mind to make it function instead of a mind that works on ab-
stract problems [Wilson, 2002]. These ideas differ quite radi-
cally from the traditional approach that describes a cognitive
process as an abstract information processing task in which
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the real physical connections to the outside world are of only
sub-critical importance, and are sometimes discarded as mere
informational encapsulated plug-ins [Fodor, 1983]. Most the-
ories in cognitive psychology take this traditional approach
and have tried to describe the process of human thinking in
terms of propositional knowledge. At the same time, artificial
intelligence research has been dominated by methods of ab-
stract symbolic processing, even when researchers have used
robotic systems to implement them [Nilsson, 1984]. Ignoring
sensorimotor influences on cognitive ability is in sharp con-
trast to the research of William James [James, 1890] and oth-
ers (see [Prinz, 1987] for a review) that describe theories of
cognition based on motor acts, or a theory of cognitive func-
tion emerging from seminal research on sensorimotor abili-
ties by Jean Piaget [Wilson, 2002] and the theory of affor-
dances by [Gibson, 1977]. In the 1980s the linguist Lakoff
and the philosopher Johnson [Lakoff and Johnson, 1980] put
forward the idea of abstract concepts based on metaphors
for bodily, physical concepts; around the same time, Brooks
[Brooks, 1986] made a major impact on artificial intelligence
research by his concepts of behavior based robotics, and inter-
action with the environment without internal representation.
This concept provides an alternative to the traditional sense-
reason-act cycle, and has gained wide attention ever since.
As promising as these ideas seem to be at first glance, one
has to carefully evaluate what exact claims can be made and
how these can be evaluated. Wilson identifies six viewpoints
for the new so-called embodied cognition approach [Wilson,
2002]:

1. Cognition is situated: All Cognitive activity takes part in
the context of a real world environment.

2. Cognition is time pressured: How does cognition work
under the pressures of real time interaction with the en-
vironment

3. Off-loading of cognitive work to the environment: Limits
of our information processing capabilities demand for
off-loading.

4. The environment is part of the cognitive system: because
of dense and continuous information flow between the
mind and the environment it is not meaningful to study
just the mind.

5. Cognition is for action: Cognitive mechanisms (percep-
tion/memory, etc.) must be understood in their ultimate
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contribution to situation appropriate behavior.

6. Off-line Cognition is body-based: Even when uncou-
pled from the environment, the activity of the mind is
grounded in mechanisms that evolved for interaction
with the environment.

We have cited all six viewpoints here, as they represent
an interesting perspective on the state of the art in embodied
cognition. In this work we focus our attention on viewpoints
3 and 5, and we use them as a theoretical starting point for
our work. To experiment with embodied cognition, we pro-
pose the use of a multifunctional four legged robot kinemati-
cally capable of walking and climbing on four legs as well as
of grasping and manipulating objects with two legs used as
arms. The role of manipulation acts in understanding spatial
geometries and objects goes back to the idea that cognitive
systems offload as much of the computational burden as pos-
sible onto the environment to understand spatial structures.
Instead of generating and transforming complex mathemati-
cal models of 3-D geometries, cognitive systems use motor
acts to generate multi-modal perceptual inputs, which they
use to test hypotheses about the nature of the geometric struc-
ture at hand.

A prerequisite for developing higher levels of cognition is
the process of sensorimotor coordination, in which the body
of the system plays a central role in learning to recognize
objects [Nolfi and Parisi, 1999; Pfeifer and Scheier, 1999].
Many researchers [Edelman, 1987; Beer, 1996; Nolfi, 1996;
Takác, 2006] have shown that sensorimotor coordination can
be exploited in solving categorization problems.

One shortcoming of most existing methods is that they are
able to recognize only a limited number of objects. Addition-
ally, most existing methods are difficult to extend. A typi-
cal application of such methods is to recognize hypothetical
objects, and they are tested only in simulation or on simple
robotic platforms. Their ability to scale when used on com-
plex robots is neither known nor proven. From our viewpoint,
the reasons for the shortcomings of the existing methods are
twofold: First, there is no presently firm theoretical frame-
work for studying correlations within and between sensori-
motor modalities for object recognition tasks. Very few ap-
proaches apply statistical and information theoretic analyses
to study the sensorimotor coordination of data taken from real
robots [Lungarella et al., 2005]. Second, kinematically com-
plex robots capable of increasing the role of the body in the
process of learning and recognition are not commonly used.
Most of the time wheeled robots with few degrees of freedom
or simulated robotic arms are used as test beds.

After the introduction of Brooks’ behavior based robotics
and interaction with environment [Brooks, 1986], there ap-
pears to be a growing sense of commitment to the idea that
cognitive ability in a system, be it natural or artificial, has to
be studied in the context of its relation to a ’kinematically
competent’ physical body. Therefore, in the last years we fo-
cused our research on complex legged robots which possess
a rich repertoire of sensor and motor abilities [Hilljegerdes et
al., 2005].

In this paper we present an extensible embodied object
recognition system that can be used in complex real robots

that learn through interaction with the environment. The sys-
tem can be easily extended to use new object-features which
distinctively describe the relevant characteristics of an object
to be recognized.

A work that is closely related to ours involves substrate
classification on the basis of proprioceptive data [Spenneberg
and Kirchner, 2005]. In this work, a legged robot named
SCORPION [Kirchner et al., 2002] interacts with various
substrates to generate certain substrate specific sensory feed-
back. The results of this experiment show that this method
of classifying based on proprioceptive data has a promising
potential for use in terrain classification of unstructured en-
vironments. One of the important benefits of terrain classifi-
cation is that it allows a terrain’s traversability to be assessed
given a specific robot body.

This paper is organized as follows: first, we give a short
overview of the learning architecture which we have used
to implement object recognition through manipulation. We
then explain the manipulation behavior and the recognition
method used. Next, we describe our experimental scenario
and the results obtained. Finally, we provide some conclu-
sions and a future outlook.

2 Learning Architecture

The architecture we have adopted, shown in Figure 1, is a
hybrid architecture which integrates a reactive system with a
higher-level deliberative system. It is suitable for controlling
and integrating spatial learning and representation techniques
in mobile robots, allowing them to explore and navigate in
unknown environments.

2.1 Reactive System

The reactive system includes the INPUT, TRANSFER,
ACTIVATION, and MOTOR modules of Figure 1. Proprio-
ceptive and exteroceptive data produced through interaction
with the environment are processed in the INPUT stage. This
stage consists of three subsystems (see Figure 2) which work
together in order to learn, distinguish and identify the percep-
tual states the system is in. In the manipulation based object
recognition experiment, an unsupervised classifier system is
implemented that considers both proprioceptive and extero-

ceptive data, represented by the vectors �SP and �SE , respec-
tively. This classifier identifies and labels clusters of simi-
lar sensorimotor stimuli together. Additionally, it generates

a cluster probability �PC,sm(�SP , �SE). Each element of this
vector represents a probability estimate of the likelihood that
a set of sensorimotor inputs belongs to a labeled cluster. The

cluster probability �PC,sm is then used to train the two remain-
ing classifiers which classify based only on the exteroceptive

sensory data vector �SE or on the proprioceptive data vector
�SD. These classifiers also generate �PC estimates, �PC,ext and
�PC,prop, which are are combined with �PC,sm to generate an

overall cluster probability �PC,input.
This overall cluster probability is mapped in the

TRANSFER module to a set of motor-program activation lev-
els. The activation levels serve to pre-activate a selected
group of motor-programs. Pre-activation consists of setting
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Figure 1: Overall learning architecture

all the parameters (i.e. phase-shift, amplitude, frequency,
etc.) of a motor-program, as well as a weight value which
is used in a further stage to merge multiple motor-programs
into a resulting behavior [Kirchner et al., 2002]. During the
learning phase of the experiment presented here, a manipula-
tion motor-program is made active.

The ACTIVATION stage generates a set of joint angles for
each motor-program. At this point, it is possible for the out-
put of the motor-programs to be modulated by other systems.
An automatic reactive control system receives proprioceptive
sensory feedback and modulates the motor-program output in
order to realize local-reflex behaviors. Additionally, a higher-
level deliberative system is able to influence a resulting action
by modulating the motor-program output. Finally, the output
from the ACTIVATION stage is fed into the MOTOR stage,
which implements a believed behavior, attempting to directly
control the robot’s actuators. We have used the term believed
behavior to indicate that there is uncertainty as to whether an
intended behavior has indeed been carried out. Likelihood
estimation of a successful behavior execution is made possi-
ble by comparing real perceptions with expected perceptions
which come from hypotheses about how the robot’s percep-
tions should change when a set of motor-programs has suc-
cessfully been executed.

2.2 Deliberative System

The deliberative system is responsible for high-level process-
ing of cluster probabilities, and it is in this system that the
world model and body model are generated through learn-

ing. Positive and negative rewards combined with believed
behavior information are used to learn the world model and
body model of the robot itself. The deliberative system is
also responsible for optimizing the existing motor-programs
or adding new motor-programs whose resulting behavior
cannot be obtained by combining the existing motor pro-
grams. Additionally, the deliberative system pre-modulates
the output of the TRANSFER module to affect which motor-
programs will be active, and post-modulates the output of
the ACTIVATION module, modifying the properties of the
motor-programs that are currently active.

3 The Recognition System

The embodied recognition system functions by manipulating
objects in order to determine their specific characteristics. A
manipulation motor-program has been implemented, added
to the ACTIVATION module, and made active for the ex-
periment. This motor-program uses a potential field method
[Khatib, 1985] to generate a trajectory for an end-effector
to reach an object. The basic idea is to create a mathemat-
ical description of a virtual potential field acting within the
workspace of the manipulator. Regions in the workspace that
are to be avoided are modelled by repulsive potentials (energy
peaks) and the target region/point is modelled by an attrac-
tive potential (energy valley). The sum of repulsive and at-
tractive potentials provides a representation of the workspace
topology. By following the gradient (i.e. the minimum poten-
tial field at each step), a path towards the goal is generated.
One fundamental difference between this method and classi-
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Figure 2: Sensory perception processor

cal path planning is that here ”planning” is not done in the
usual sense. Rather, a path is incrementally computed that
will end at the target position. This approach can be viewed
as a reactive approach since there is no deliberation involved
and it can be implemented on lower layers of control. Further-
more, this reactiveness allows us to deal with obstacles on a
real-time basis, the only limitation being the time needed to
detect and identify objects as obstacles or goals.

While manipulating objects, both proprioceptive data
(pressure at fingertips, motor current consumption, motor an-
gular position) and exteroceptive data (color of the object,
number of corners detected on the object, number of line seg-
ments detected, and other distinctive features) are recorded.
Both of these types of data are combined to form a vector
�X = [�SP , �SE ]. The resulting vector is statistically analyzed
in order to extract important parameters that distinctively de-
scribe the object being manipulated. For example, the aver-
age power consumption of the motors during the manipula-
tion phase will differ depending on an object’s weight. This
data is then clustered using the standard k-means algorithm
[MacQueen, 1967] and the resulting clusters are labeled.

Prior to clustering, each element of a data vector is normal-
ized using

x′

i =
xi − xi

σi

(1)

where i = 1, · · · , L and L is the length of a data vector �X .
The mean xi and variance σ2

i are calculated with respect to
the training data using

xi = 1

N

∑N

n=1
xn

i

σ2

i = 1

N−1

∑N

n=1
(xn

i − xi)
2

. (2)

where N is the number of data vectors in the training set. This
normalization process is necessary since the elements of a
data vector typically have magnitudes that differ significantly.

The labeled clusters are then used to train a radial basis
function network [Bishop, 1995] (a subsystem of the INPUT
module) for classifying the clusters based on proprioceptive
and exteroceptive data. Rather than choosing a subset of data

points of the clusters as the centers of basis functions, we
use the k-means clustering algorithm (in which the number
of centers must be decided in advance) to determine for each
cluster a set of centers which more accurately reflects the dis-
tribution of the cluster’s data points. The appropriate number
of center points is determined by the performance of the re-
sulting network on a validation set. In the implemented neu-
ral network, we used a Gaussian function as a basis function.
Figure 3 shows the topology of the radial basis function net-
work used for data classification.

Figure 3: Radial basis function network

4 Experimental Setup

The robot used for testing our system was developed in our
group, and is based on the design of the ARAMIES robot
[Hilljegerdes et al., 2005]. Our robot is a fully functional
ambulating robot that is robust and kinematically flexible. It
is equipped with various sensors that enable it to perceive
both proprioceptive and exteroceptive signals. On each of
the robot’s legs, there are 6 D.C. motors, 6 pressure sensors,
and an infrared sensor. For our experiment, the camera of the
robot was used as a source of exteroceptive data, and the av-
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erage motor current consumption of each motor was used as
a source of proprioceptive data.

Figure 4: The robot manipulating an object

In the experiment we performed, the robot’s body is fixed
and it uses its forelegs to manipulate the different objects
shown in Figure 5. The objects have differing weights and
visual features. Two of the objects have the same visual fea-
tures, and cannot be distinguished from each other using only
visual information; these objects are marked as ”A” and ”B”
in Figure 5. The faces on which the letters are written are
placed away from the camera of the robot so that the two ob-
jects appear indistinguishable to the robot.

Figure 5: Objects used in the sensorimotor-coordination ex-
periment

In the training session, five manipulation acts were per-
formed on each of the objects. For a single manipulation act,
we took a series of images from which we calculated the av-
erage number of contours extracted and the average area of
the extracted contours. Furthermore, we calculated the total
current consumption average for the motors on both of the
robot’s forelegs.

5 Results

5.1 Repeatability of Features

Table 1 shows, for each of the object, the average and stan-
dard deviation of the number of detected contours Nc, the
area (number of pixels) of the detected contours Ac, and the
total current consumption I (in mA) of both of the robot’s
forelegs over all training sessions. This data is an indirect

Obj. Nc Ac

∑
I σNc σAc σ(

∑
I)

1 1 4812.2 4688.68 0 48.22 217.93
2 1 4925.77 5242.52 0 61.53 159.14
3 2 3134.15 4670.66 0 39.5 181.27
4 6.96 953.1 4916.75 0.21 10.4 319.41

Table 1: The average and standard deviation of features over
the whole training set

measure of the repeatability of a particular feature’s measure-
ments. A measurement for a feature is repeatable if the vari-
ance of the measurement over a given sample of measure-
ments is small enough that the overlap of measurements re-
sulting from different objects is minimal. One can easily see
that the number of contours detected is the most stable fea-
ture in this experiment. For getting the number of contours,
we used a detector which is robust against noise and changes
in lighting conditions. The average current consumption of
both legs shows the highest variance in relation to the other
features since the end effectors of the forelegs do not grab
the object at the same point for each training session. This
causes the object’s center of gravity to shift with respect to
the end effector, and thus a variation in the average current
consumption is observed.

5.2 Recognition Rates

We tested the system’s ability to recognize the objects it was
trained for. The system was tested in three different scenar-
ios. In the first scenario, the system was permitted to use both
exteroceptive and proprioceptive data to recognize objects. In
this case, the recognition rate was the highest, yielding only
one misclassification in 20 trials. In the case where the sys-
tem was allowed to use only exteroceptive data, there were
7 misclassifications in 20 trials. This poorer performance is
explained by the fact that two of the objects have the same
visual features. In contrast to these results, when only propri-
oceptive data was used, there were only 3 misclassifications
in 20 trials because the weights of each object were unique.
An interesting point is that the system was able to correctly
classify objects ”A” and ”B” in this case, which would have
caused problems when using only exteroceptive data.

6 Conclusion and Outlook

An embodied recognition system has been presented which
learns to recognize objects by interacting with them. We have
shown that a learning system trained based on multimodal
sensory information can recognize objects by using only par-
tially available (i.e. only exteroceptive, or only propriocep-
tive) sensory data. The direct byproduct of such systems is a
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robust system which continues to operate in the absence of ei-
ther the proprioceptive or the exteroceptive data. Our prelim-
inary results demonstrate that this method can be effectively
used in a robotic system which learns from experience about
its environment.

In the future, we plan to extend the system by increas-
ing the number of proprioceptive and exteroceptive object-
features extracted from the environment, and improving their
stability. For example, we may use local features such as
SIFT (Scale Invariant Feature Transform) features [Love,
2004] that describe objects distinctively and which are sta-
ble against translation, rotation, scaling and different lighting
conditions. Moreover, we want to extend the ACTIVATION
module of Figure 1 using adaptive manipulation techniques
that result in better manipulation skills [Kamon et al., 1998;
Coelho et al., 2001; Morales et al., 2004].
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