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Abstract

This paper establishes a link between the challenge of solv-
ing highly ambitious problems in machine learning and the
goal of reproducing the dynamics of open-ended evolution in
artificial life. A major problem with the objective function
in machine learning is that through deception it may actu-
ally prevent the objective from being reached. In a similar
way, selection in evolution may sometimes act to discourage
increasing complexity. This paper proposes a single idea that
both overcomes the obstacle of deception and suggests a sim-
ple new approach to open-ended evolution: Instead of either
explicitly seeking an objective or modeling a domain to cap-
ture the open-endedness of natural evolution, the idea is to
simply search for novelty. Even in an objective-based prob-
lem, such novelty search ignores the objective and searches
for behavioral novelty. Yet because many points in the search
space collapse to the same point in behavior space, it turns
out that the search for novelty is computationally feasible.
Furthermore, because there are only so many simple behav-
iors, the search for novelty leads to increasing complexity. In
fact, on the way up the ladder of complexity, the search is
likely to encounter at least one solution. In this way, by de-
coupling the idea of open-ended search from only artificial
life worlds, the raw search for novelty can be applied to real
world problems. Counterintuitively, in the deceptive maze
navigation task in this paper, novelty search significantly out-
performs objective-based search, suggesting a surprising new
approach to machine learning.

Introduction
The problem of overcoming deception and local optima to
find an objective in machine learning is not often linked to
the goal of creating a truly open-ended dynamic in artificial
life. Yet this paper argues that the same key idea addresses
both challenges.

The concept of the objective function, which rewards get-
ting closer to the goal, is ubiquitous in machine learning
[22]. However, objective functions come with the pathol-
ogy of local optima; landscapes from objective (e.g. fitness)
functions are often deceptive [9, 21]. As a rule of thumb, the
more ambitious the goal, the more likely it is that search can
be deceived by local optima. The problem is that the objec-
tive function does not necessarily reward the stepping stones
in the search space that ultimately lead to the objective.

For example, it is difficult to train a simulated biped with-
out first suspending it from a string because it simply falls
down on every attempt, obfuscating to the objective function
any improvements in leg oscillation [30].

For these reasons, ambitious objectives are often carefully
sculpted through a curriculum of graded tasks, each chosen
delicately to build upon the prior [8, 10, 30]. Yet such in-
cremental training is difficult and ad hoc, requiring intimate
domain knowledge and careful oversight.

In contrast to the focus on objective optimization in ma-
chine learning, researchers in artificial life often study sys-
tems without explicit objectives, such as in open-ended evo-
lution. An ambitious goal of this research is to reproduce
the unbounded innovation of natural evolution. A typical
approach is to create a complex artificial world in which
there is no final objective other than survival and replication
[4, 32]. Such models assume that biologically-inspired evo-
lution supports creating an open-ended dynamic that leads
to unbounded increasing complexity [3, 4, 16].

However, a growing yet controversial view in biology is
that the drive towards complexity is a passive force, i.e. not
driven primarily by selection [15, 18, 19]. In fact, in this
view, the path towards complexity in natural evolution can
sometimes be inhibited by selection pressure. Thus although
open-endedness is often framed as an adaptive competition
in artificial life worlds [3, 16], this paper decouples the idea
of open-endedness from the domain by capitalizing on a
simpler perspective: An open-ended evolutionary system is
simply one that continually produces novel forms [25].

This perspective leads to a key idea that addresses the
problems in both artificial life and machine learning: In-
stead of modeling natural evolution with the hope that novel
individuals will be continually discovered, it is possible to
search directly for novelty. Thus this paper introduces the
novelty search algorithm, which searches with no objective
other than continually finding novel behaviors in the search
space. By defining novelty in this domain-independent way,
novelty search can be applied to real world problems as di-
rectly as artificial life worlds. In fact, because there are only
so many ways to behave, some of which must be more com-

Artificial Life XI 2008  329 



plex than others [6], the passive force in nature that leads
to increasing complexity is accelerated by searching for be-
havioral novelty.

To demonstrate the power of novelty search, in this pa-
per it is compared to objective-based search in a deceptive
two-dimensional robot maze navigation task. Counterintu-
itively, novelty search, which ignores the objective, evolves
successful maze navigators that reach the objective in signif-
icantly fewer evaluations than the objective-based method.
For harder mazes, the objective-based method almost always
fails, while novelty search is successful in nearly every at-
tempt. These results defy the premise in much of machine
learning that the objective is the proper impetus for search.

The conclusion is that by abstracting the process through
which natural evolution discovers novelty, it is possible to
derive an open-ended search algorithm that applies naturally
to both real-world machine learning problems and artificial
life worlds. Novelty search overcomes the problems of de-
ception and local optima inherent in objective optimization
by ignoring the objective, suggesting the surprising conclu-
sion that ignoring the objective in this way may often benefit
the search for the objective.

Background
This section reviews open-endedness in natural evolution
and evolutionary computation, as well as the neuroevolution
method used in the experiments.

Open-endedness in Natural Evolution
Natural evolution fascinates practitioners of search because
of its profuse creativity, lack of volitional guidance, and per-
haps above all its drive towards complexity.

A subject of longstanding debate is the arrow of complex-
ity [3, 19], i.e. the idea that evolutionary lineages sometimes
tend towards increasing complexity. What about evolution-
ary search in nature causes complexity to increase? This
question is important because the most difficult problems
in search, e.g. an intelligent autonomous robot, may require
discovering a prohibitive level of solution complexity.

The topic of complexity in natural evolution is much in
contention across biology, artificial life, and evolutionary
computation [15, 19, 23, 28]. One important question is
whether there is a selective pressure towards complexity in
evolution. A potentially heretical view that is gaining at-
tention is that progress towards higher forms is not mainly
a direct consequence of selection pressure, but rather an in-
evitable passive byproduct of random perturbations [15, 19].
Researchers like Miconi [19] in artificial life, and Lynch
[14, 15] in biology are arguing that natural selection does
not always explain increases in evolutionary complexity. In
fact, they argue that to the extent that fitness (i.e. in nature,
the ability to survive and reproduce) determines the direction
of evolution, it can be deleterious to increasing complexity.
In other words, rather than laying a path towards the next

major innovation, fitness (like the objective function in ma-
chine learning) in effect prunes that very path away.

In particular, Miconi [19] points out that natural selection
restricts the breadth of evolution because only designs with
high fitness can be further explored. Lynch [15], a biologist,
goes even further, arguing that selection pressure in general
does not explain innovation, and that nonadaptive processes
are often undeservedly ignored.

These arguments lead to the main idea in this paper that it
may be most effective to simply search explicitly for novel
behaviors.

Open-Ended Evolutionary Computation
The open-ended evolution community in artificial life aims
to produce simulated worlds that allow a similar degree of
unconstrained exploration as Earth. Tierra [24], PolyWorld
[32] and Geb [4] are typical examples. There is no objec-
tive beyond that of survival and reproduction. The motiva-
tion behind this approach is that as evolution explores an
unbounded range of life forms, complexity will inevitably
increase [4, 19].

Bedau and Packard [1] and Bedau et al. [2] have con-
tributed to formalizing the notion of unbounded open-ended
dynamics by deriving a test (called activity statistics) that
classifies evolutionary systems into categories of open-
endedness. Geb and others have passed this test [4, 16], but
the results nevertheless do not appear to achieve the levels
of diversity or complexity seen in natural evolution. This
apparent deficiency raises the question of what element is
missing from current models [25]. Many suggest that more
detailed, lifelike domains must be constructed to facilitate
the open-ended dynamic of natural evolution [20, 25, 32].

However, this paper presents a more general approach to
open-ended evolution that is motivated well by the follow-
ing insight from Standish [25]: “The issue of open-ended
evolution can be summed up by asking under what condi-
tions will an evolutionary system continue to produce novel
forms.” Thus, instead of modeling natural selection, the idea
in this paper is that it is more efficient to search directly for
novel behaviors. While not intended to replace previous ap-
proaches to open-ended evolution, the advantage of this ap-
proach is that it decouples the concept of open-endedness
from the problem domain because novelty can be sought in
any domain. Therefore, it can apply to real-world tasks as
easily as artificial life worlds.

It is important to acknowledge that this view of open-
endedness contrasts with the more commonly accepted no-
tion of prolonged production of adaptive traits [1, 2]. Never-
theless, the simpler view of open-endedness merits consid-
eration on the chance that a dynamic that appears adaptive
might be possible to capture in spirit with a simpler process.

The experiment in this paper combines this approach to
open-ended evolution with the NEAT method, which is ex-
plained in the next section.
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NeuroEvolution of Augmenting Topologies (NEAT)
The NEAT method was originally developed to evolve arti-
ficial neural networks (ANNs) to solve difficult control and
sequential decision tasks [26, 27, 29]. Evolved ANNs con-
trol agents that select actions based on their sensory inputs.
Like the SAGA method [11] introduced before it, NEAT be-
gins evolution with a population of small, simple networks
and complexifies the network topology into diverse species
over generations, leading to increasingly sophisticated be-
havior. A similar process of gradually adding new genes has
been confirmed in natural evolution [17, 31], and fits well
with the idea of open-ended evolution.

However, a key feature that distinguishes NEAT from
prior work in complexification is its unique approach to
maintaining a healthy diversity of complexifying structures
simultaneously, as this section reviews. Complete descrip-
tions of the NEAT method, including experiments confirm-
ing the contributions of its components, are available in
Stanley et al. [26], Stanley and Miikkulainen [27], and Stan-
ley and Miikkulainen [29]. Let us review the key ideas on
which the basic NEAT method is based.

To keep track of which gene is which while new genes
are added, a historical marking is uniquely assigned to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Speciation in NEAT protects new struc-
tural innovations by reducing competition between differing
structures and network complexities, thereby giving newer,
more complex structures room to adjust. Networks are as-
signed to species based on the extent to which they share his-
torical markings. Complexification, which resembles how
genes are added over the course of natural evolution [17],
is thus supported by both historical markings and specia-
tion, allowing NEAT to establish high-level features early in
evolution and then later elaborate on them. In effect, then,
NEAT searches for a compact, appropriate network topology
by incrementally complexifying existing structure.

In the experiment in this paper, NEAT is combined with
novelty search, which is is explained next.

The Search for Novelty
Recall that the problem identified with the objective function
in machine learning is that it does not necessarily reward the
intermediate stepping stones that lead to the objective. The
more ambitious the objective, the harder it is to identify a
priori these stepping stones.

The suggested approach is to identify novelty as a proxy
for stepping stones. That is, instead of searching for a final
objective, the learning method is rewarded for finding any
instance whose functionality is significantly different from
what has been discovered before. Thus, instead of an ob-
jective function, search employs a novelty metric. That way,
no attempt is made to measure overall progress. In effect,
such a process performs explicitly what natural evolution

does passively, i.e. gradually accumulating novel forms that
ascend the complexity ladder.

For example, in a maze navigation domain, initial at-
tempts might run into a wall and stop. In contrast with an
objective function, the novelty metric would reward simply
running into a different wall regardless of whether it is closer
to the goal or not. In this kind of search, a set of instances are
maintained that represent the most novel discoveries. Fur-
ther search then jumps off from these representative behav-
iors. After a few ways to run into walls are discovered, the
only way to be rewarded is to find a behavior that does not
hit a wall right away. In this way, the complexity bucket
fills from the bottom up. Eventually, to do something new,
a navigator will have to successfully navigate the maze even
though it is not an objective!

At first glance, this approach may seem naive. What con-
fidence can we have that a search process can solve a prob-
lem when the objective is not provided whatsoever? Yet its
appeal is that it rejects the misleading intuition that objec-
tives are an essential means to discovery. The idea that the
objective may be the enemy of progress is a bitter pill to
swallow, yet if the proper stepping stones do not lie conve-
niently along its gradient, we must begin to leave behind its
false security.

Still, what hope is there that novelty is any better when
it contains no information about the direction of the solu-
tion? Is not the space of novel behaviors unboundedly vast,
creating the potential for endless meandering? One might
compare novelty search to exhaustive search: Of course a
search that enumerates all possible solutions will eventually
find the solution, but at enormous computational cost.

Yet there are good reasons to believe that novelty search
is not like exhaustive search, and that in fact the number of
novel behaviors is reasonable and limited in many practical
domains. The main reason for optimism is that task domains
on their own provide sufficient constraints on the kinds of
behaviors that can exist or are meaningful, without the need
for further constraint from an objective function.

For example, a robot navigating a maze can only do so
many things; the robots in the experiments in this paper have
only two effectors. Although the search space is effectively
infinite because of NEAT’s ability to add new genes, the be-
havior space into which points in the search space collapse
is limited. For example, after an evaluation in the maze, a
robot finishes at a specific location. Suppose the robot’s be-
havior is characterized only by this ending location. While
there are many ways to encode a policy that arrives at a par-
ticular point, under this measure of novelty, they all collapse
to the same behavior. In fact, the search space collapses into
a manageable number of novelty points, significantly differ-
entiating novelty search from exhaustive enumeration.

Furthermore, novelty search succeeds where objective-
based search fails by rewarding the stepping stones. That
is, anything that is genuinely different is rewarded and pro-
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moted as a jumping-off point for further evolution. While
we cannot know which stepping stones are the right ones,
if we accept that the primary pathology in objective-based
search is that it cannot detect the stepping stones at all, then
that pathology is remedied.

The next section introduces the novelty search algorithm
by replacing the objective function with the novelty metric
and formalizing the concept of novelty itself.

The Novelty Search Algorithm
Evolutionary algorithms like NEAT are well-suited to nov-
elty search because the population that is central to such
algorithms naturally covers a wide range of expanding be-
haviors. In fact, tracking novelty requires little change to
any evolutionary algorithm aside from replacing the fitness
function with a novelty metric.

The novelty metric measures how different an individual
is from other individuals, creating a constant pressure to do
something new. The key idea is that instead of rewarding
performance on an objective, the novelty search rewards di-
verging from prior behaviors. Therefore, novelty needs to
be measured.

There are many potential ways to measure novelty by an-
alyzing and quantifying behaviors to characterize their dif-
ferences. Importantly, like the fitness function, this measure
must be fitted to the domain.

The novelty of a newly generated individual is computed
with respect to the behaviors (i.e. not the genotypes) of an
archive of past individuals whose behaviors were highly
novel when they originated. In addition, if the evolution-
ary algorithm is steady state (i.e. one individual is replaced
at a time) then the current population can also supplement
the archive by representing the most recently visited points.
The aim is to characterize how far away the new individual
is from the rest of the population and its predecessors in nov-
elty space, i.e. the space of unique behaviors. A good metric
should thus compute the sparseness at any point in the nov-
elty space. Areas with denser clusters of visited points are
less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. In-
tuitively, if the average distance to a given point’s nearest
neighbors is large then it is in a sparse area; it is in a dense
region if the average distance is small. The sparseness ρ at
point x is given by

ρ(x) =
1
k

k∑

i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population

and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores. It is important to
note that this novelty space cannot be explored purposefully,
that is, it is not known a priori how to enter areas of low den-
sity just as it is not known a priori how to construct a solu-
tion close to the objective. Thus, moving through the space
of novel behaviors requires exploration. In effect, because
novelty is measured relative to other individuals in evolu-
tion, it is driven by a coevolutionary dynamic.

If novelty is sufficiently high at the location of a new indi-
vidual, i.e. above some minimal threshold ρmin , then the in-
dividual is entered into the permanent archive that character-
izes the distribution of prior solutions in novelty space, sim-
ilarly to archive-based approaches in coevolution [7]. The
current generation plus the archive give a comprehensive
sample of where the search has been and where it currently
is; that way, by attempting to maximize the novelty metric,
the gradient of search is simply towards what is new, with
no other explicit objective.

It is important to note that novelty search resembles prior
diversity maintenance techniques (i.e. speciation) popular in
evolutionary computation. The most well known are vari-
ants of fitness sharing [5]. These also in effect open up the
search by reducing selection pressure. However, in these
methods, as in Hutter’s fitness uniform selection [13], the
heretical step of eschewing the fitness function entirely is
not taken. In contrast, novelty search only rewards behav-
ioral diversity with no concept of fitness or a final objective.

It is also important to note that novelty search is not a ran-
dom walk; rather, it explicitly maximizes novelty. Because
novelty search includes an archive that accumulates a record
of where search has been, backtracking, which can happen
in a random walk, is effectively avoided in behavioral spaces
of any dimensionality.

The novelty search approach in general allows any behav-
ior characterization and any novelty metric. Although gen-
erally applicable, novelty search is best suited to domains
with deceptive fitness landscapes, intuitive behavioral char-
acterization, and domain constraints on possible expressible
behaviors. Changing the way the behavior space is charac-
terized and the way characterizations are compared will lead
to different search dynamics, similarly to how researchers
now change the objective function to improve the search.
The intent is not to imply that setting up novelty search is
easier than objective-based search. Rather, once novelty
search is set up, the hope is that it can find solutions be-
yond what even a sophisticated objective-based search can
currently discover. Thus, the effort is justified in its returns.

Once objective-based fitness is replaced with novelty, the
NEAT algorithm operates as normal, selecting the highest-
scoring individuals to reproduce. Over generations, the pop-
ulation spreads out across the space of possible behaviors,
continually ascending to new levels of complexity (i.e. by
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(a) Neural Network (b) Sensors
Figure 1: Maze Navigating Robot. The artificial neural network
that controls the maze navigating robot is shown in (a). The layout
of the sensors is shown in (b). Each arrow outside of the robot’s
body in (b) is a rangefinder sensor that indicates the distance to
the closest obstacle in that direction. The robot has four pie-slice
sensors that act as a compass towards the goal, activating when a
line from the goal to the center of the robot falls within the pie-
slice. The solid arrow indicates the robot’s heading.

expanding the neural networks in NEAT) to create novel be-
haviors as the simpler variants are exhausted.

Experiment
A good domain for testing novelty search should have a de-
ceptive fitness landscape. In such a domain, the search al-
gorithm following the fitness gradient may perform worse
than an algorithm following novelty gradients because nov-
elty cannot be deceived; it ignores fitness entirely. A com-
pelling, easily-visualized domain with this property is a two-
dimensional maze navigation task. A reasonable fitness
function for such a domain is how close the maze naviga-
tor is to the goal at the end of the evaluation. Thus, dead
ends that lead close to the goal are local optima to which
an objective-based algorithm may converge, which makes a
good model for deceptive problems in general.

This paper’s experiments utilize NEAT, which has been
proven in many control tasks [27, 29], including maze navi-
gation [26], the domain of the experiments in this paper.

The maze domain works as follows. A robot controlled
by an ANN must navigate from a starting point to an end
point in a fixed time. The task is complicated by cul-de-sacs
that prevent a direct route and that create local optima in the
fitness landscape. The robot (figure 1) has six rangefind-
ers that indicate the distance to the nearest obstacle and four
pie-slice radar sensors that fire when the goal is within the
pie-slice. The robot’s two effectors result in forces that re-
spectively turn and propel the robot. This setup is similar to
the successful maze navigating robots in NERO [26].

Two maps are designed to compare the performance of
NEAT with fitness-based search and NEAT with novelty
search. The first (figure 2a) has deceptive dead ends that
lead the robot close to the goal. To achieve a higher fitness
than the local optimum provided by a dead end, the robot
must travel part of the way through a more difficult path that
requires a weaving motion. The second maze (figure 2b)
provides a more deceptive fitness landscape that requires the
search algorithm to explore areas of significantly lower fit-
ness before finding the global optimum (which is a network
that reaches the goal).

(a) Medium Map (b) Hard Map

Figure 2: Maze Navigation Maps. In both maps, the large circle
represents the starting position of the robot and the small circle
represents the goal. Cul-de-sacs in both maps that lead toward the
goal create the potential for deception.

Fitness-based NEAT, which will be compared to novelty
search, requires a fitness function to reward maze-navigating
robots. Because the objective is to reach the goal, the fitness
f is defined as the distance from the robot to the goal at the
end of an evaluation: f = bf − dg , where bf is a constant
bias and dg is the distance from the robot to the goal. Given
a maze with no deceptive obstacles, this fitness function de-
fines a monotonic gradient for search to follow. The constant
bf ensures all individuals will have positive fitness.

NEAT with novelty search, on the other hand, requires
a novelty metric to distinguish between maze-navigating
robots. Defining the novelty metric requires careful con-
sideration because it biases the search in a fundamentally
different way than the fitness function. The novelty met-
ric determines the behavior-space through which search will
proceed. It is important that the type of behaviors that one
hopes to distinguish are recognized by the metric.

Thus, for the maze domain, the behavior of a navigator is
defined as its ending position. The novelty metric is then the
Euclidean distance between the ending positions of two in-
dividuals. For example, two robots stuck in the same corner
appear similar, while one robot that simply sits at the start
position looks very different from one that reaches the goal,
though they are both equally viable to the novelty metric.

This novelty metric rewards the robot for ending in a place
where none have ended before; the method of traversal is ig-
nored. This measure reflects that what is important is reach-
ing a certain location (i.e. the goal) rather than the method
of locomotion. Thus, although the novelty metric has no
knowledge of the final goal, a solution that reaches the goal
will appear novel. Furthermore, the comparison between
fitness-based and novelty-based search is fair because both
scores are computed only based on the distance of the final
position of the robot from other points.

Finally, to confirm that novelty search is indeed not any-
thing like random search, NEAT is also tested with a ran-
dom fitness assigned to every individual regardless of per-
formance, which means that selection is random. If the maze
is solved, the number of evaluations is recorded.

Experimental Parameters
Because NEAT with novelty search differs from orig-
inal NEAT only in substituting a novelty metric for
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(a) Medium Map (b) Hard Map

Figure 3: Comparing Novelty Search to Fitness-based Search. The change in fitness over time (i.e. number of evaluations) is shown
for NEAT with novelty search, fitness-based NEAT, and NEAT with random selection on the medium (a) and hard (b) maps, both averaged
over 40 runs of each approach. The horizontal line indicates at what fitness the maze is solved. The main result is that novelty search is
significantly more effective. Only the first 75,000 evaluations (out of 250,000) are shown because the dynamics remain stable after that point.

a fitness function, it uses the same parameters. All
experiments were run using a modified version of
the real-time NEAT (rtNEAT) package (available from
http://www.cs.utexas.edu/users/nn/keyword?rtneat) with a
population size of 250. The steady-state rtNEAT evolution-
ary algorithm performs equivalently to generational NEAT
[26]. Offspring had a 0.5% chance of adding a node, a 10%
chance of adding a link, and the weight mutation power is
0.8. Parameter settings are based on standard NEAT de-
faults and were found to be robust to moderate variation.
Runs consisted of 250, 000 evaluations, which is equivalent
to 1, 000 generations of 250 individuals in a generational
evolutionary algorithm.

The number of nearest neighbors checked in novelty
search, k, was set to 15, and is robust to moderate variation.
The minimum threshold of novelty before adding to the per-
manent archive of points, ρmin, was initialized to 3.0, but
changed dynamically: If 2,500 evaluations pass, and no new
individuals have been added to the archive, the threshold is
lowered by 5%. If over four are added in the same amount of
evaluations, it is raised by 20%. In addition, any evaluated
point has a 0.1% chance to be added to the archive.

A robot is allotted 400 timesteps to navigate through a
maze. This number was chosen experimentally to make
navigation more difficult; because time is limited, the robot
must make efficient movements to reach the goal. The fit-
ness bias fb was 300.0, which ensures that a positive fitness
is awarded to all individuals.

Results
On both maps, a robot that finishes within five units of
the goal counts as a solution. On the medium map, both
fitness-based NEAT and NEAT with novelty search were
able to evolve solutions in every run (figure 3a). Novelty
search took on average 18, 274 evaluations (sd = 20, 447) to
reach a solution, while fitness-based NEAT was three times

slower, taking 56, 334 evaluations (sd = 48, 705), averaged
over 40 runs. This difference is significant (p < .0001).
NEAT with random selection performed much worse than
the other two methods, finding successful navigators in only
21 out of 40 runs, which confirms the difference between
novelty search and random search.

Interestingly, the genomic complexity of solutions
evolved by fitness-based NEAT for the medium map (66.74
connections, sd = 56.7) was almost three times greater
(p < 0.05) than those evolved by NEAT with novelty search
(24.6 connections, sd = 4.59), even though both share the
same parameters.

On the hard map, fitness-based NEAT was only able to
evolve a successful navigator in three out of 40 runs, while
NEAT with random selection fared marginally better, suc-
ceeding in four out of 40 runs, showing that deception in
this map renders the gradient of fitness no more helpful than
random search. However, novelty search was able to solve
the same map in 39 out of 40 runs, in 35, 109 evaluations
(sd = 30, 236) on average when successful, using 33.46
connections on average (sd = 9.26). Figure 3b shows this
more dramatic divergence. Remarkably, because the sec-
ond maze is so deceptive, the same rtNEAT algorithm can
almost never solve it when solving the maze is made the ex-
plicit objective, yet solves it almost every time when finding
novel behavior is the objective!

Typical Behavior
Figure 4 depicts behaviors (represented as the final point
visited by an individual) discovered during typical runs of
NEAT with novelty search and fitness-based NEAT on each
map. Novelty search exhibits a more even distribution of
points throughout both mazes. Fitness-based NEAT shows
areas of density around local optima in the maze.

The typical behavior of a successful robot on either maze
was to directly traverse the maze for both methods.
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(a) Medium Map Novelty (b) Hard Map Novelty

(c) Medium Map Fitness (d) Hard Map Fitness

Figure 4: Final Points Visited Over Typical Runs. Each maze
depicts a typical run, stopping at either 250,000 evaluations or
when a solution is found. Each point represents the end location
of a robot evaluated during the run. Novelty search is more evenly
distributed because it is not deceived.

Discussion and Future Work
Novelty search casts the performance of evolutionary algo-
rithms in a new perspective. Based on the performance of
fitness-based NEAT on the second maze, one might con-
clude that NEAT is no better than random search for solv-
ing this particular problem. Yet NEAT-based novelty search,
which changes the reward function to ignore the objective
while preserving the rest of the algorithm, shows that the
pathology is not in NEAT but rather in the pursuit of the ob-
jective itself. In fact, the second maze is consistently solved
by NEAT when it is given no specific objective other than
to produce individuals that are different functionally from
those seen before. It is thus when NEAT is charged simply
with continually searching for something new that it effec-
tively solves the problem.

However, novelty search has limitations as well; because
it ignores the objective, there is no bias towards optimiza-
tion once a solution is found. An optimized solution may
be produced by novelty search only if an individual can ap-
pear novel by reaching such performance. However, it is
likely more efficient to take the most promising results from
novelty search and further optimize them based on an ob-
jective function. This idea exploits the strengths of both ap-
proaches: Novelty search effectively finds approximate so-
lutions, while objective optimization is good for tuning ap-
proximate solutions. Alternatively, novelty search could be
applied when a traditional evolutionary algorithm converges,
to replenish diversity in the population. These ideas for com-
bining novelty and fitness-based search will be explored in
future experimentation.

While glaringly counterintuitive, the idea that the search
for novelty can outperform the search for the objective in-
troduces critical insight: Objective fitness by necessity in-
stantiates an imposing landscape of peaks and valleys. For
complex problems it may be impossible to define an objec-
tive function where these peaks and valleys create a direct

route through the search space. Yet in novelty search, the
rugged landscape evaporates into an intricate web of paths
leading from one idea to another; the concepts of higher
and lower ground are replaced by an agnostic landscape that
points only along the gradient of novelty.

This idea further hints at a novel perspective on open-
endedness that is fitness-agnostic. Rather than viewing
open-ended evolution as an adaptive competition, it can be
viewed simply as a passive drift through the lattice of nov-
elty. As Lynch [15] and Miconi [19] suggest, it is often
when the reigns of selection pressure are lifted that evolu-
tion innovates most prolifically. Novelty search is simply
an accelerated version of this passive force in natural evo-
lution; unlike in nature it explicitly rewards drifting away in
the phenotype/behavior space, thereby pushing the innovat-
ing process ahead. While this perspective bypasses a long-
standing notion of adaptive innovation in open-ended evolu-
tion [3, 4, 16], it offers a complementary view that is recom-
mended by its intuitive simplicity: Open-endedness can be
defined simply as the continual production of novelty.

The benefit of this view is that it means that we can now
endow any domain with this kind of open-endedness. No
longer are we restricted to complex artificial life worlds in
our pursuit of open-ended discovery. As long as novelty can
be defined (which will not always be easy), it can be sought
explicitly in every domain from simple XOR to the most
complex artificial world, putting many practical problems in
machine learning within its reach.

For example, it is difficult to evolve a checkers player
from scratch against a fixed world-class opponent because
early generation individuals are always completely defeated.
Yet novelty search abandons the idea that winning is the
goal; rather it can simply try to lose in a different way. As
the approaches to losing are exhausted one by one, eventu-
ally it will cross the path to winning, avoiding all deception
and providing an entirely new kind of practical search that
is nevertheless open-ended.

In addition, in the context of artificial life, it is interesting
to consider how novelty search relates to natural evolution.
Novelty is preserved in nature as long as a novel individ-
ual meets minimal selection criteria. It is also encouraged
through niching. Moreover, there is evidence of active nov-
elty search in natural evolution as well: Intersexual selection
sometimes biases mate choice towards novelty [12]. Thus it
is not unreasonable to view natural evolution as a kind of
novelty search in addition to an adaptive competition.

Finally, novelty search provides a new hope for an artifi-
cial arrow of complexity. For, as Dawkins has said [6], once
all the simple ways to live have been exhausted, the only
way to do anything different is to become more complex. In
a passive way, this idea explains the arrow of complexity in
nature. In novelty search, the principle should also hold true.

In fact, the result that the solutions to the medium maze
discovered by NEAT with novelty search contain almost
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three times fewer connections than those discovered by
fitness-based NEAT suggests that novelty search climbs the
ladder of complexity more efficiently. While this intrigu-
ing result merits further study, a possible explanation is
that compact solutions are often missed by objective-based
search because they are hidden behind deceptive landscapes.
Novelty search is more likely to encounter the most compact
solution on the way up the ladder of complexity because it
is not susceptible to such deception.

The problem with the objective is that it fails to identify
the stepping stones. The more ambitious and complex the
problem, the more difficult it is to formalize an objective that
rewards the stepping stones along the way. Yet it is exactly
those stepping stones that ultimately must be identified and
rewarded if search is to find its way up the ladder of com-
plexity [19]. Novelty search is designed to build gradients
that lead to stepping stones. By abandoning the objective,
all the steps along the way come into greater focus. While
the trade-off is a more expansive search, it is better to search
far and wide and eventually reach a summit than to search
narrowly and single-mindedly yet never come close.

The implications of this approach are far-reaching be-
cause it is relevant to all of machine learning. The idea
that search is more effective without an objective challenges
fundamental assumptions and common intuitions about why
search works. It is also the first machine learning approach
to take seriously the growing (yet controversial) consensus
in biology and artificial life that adaptive selection does not
explain the arrow of complexity in nature [14, 15]. Novelty
search asks what is left if the pressure to achieve the objec-
tive is abandoned. Thus its potential reach is broad. Further-
more, the implication for artificial life is that the adaptive
competition is not necessary to promote an open-ended dy-
namic, suggesting a new approach to modeling evolution in
artificial worlds.

In summary, almost like a riddle, novelty search suggests
a surprising new perspective on achievement: To achieve
your highest goals, you must be willing to abandon them.

Conclusions
This paper introduced novelty search, a domain-independent
method of open-ended search. Motivated both by the prob-
lem of deceptive gradients in objective-based search and the
desire for a simple approach to open-ended evolution, nov-
elty search ignores the objective and instead searches only
for individuals with novel behaviors. Counterintuitively, ex-
periments in a deceptive navigation task showed that novelty
search can significantly outperform objective-based search.
Novelty search thus makes it possible to effectively apply
the power of open-ended search to real-world problems.
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