
EXPLOITING ADVANCED COLLISION DETECTION
LIBRARIES IN A PROBABILISTIC MOTION PLANNER

S. Caselli, M. Reggiani, M. Mazzoli

Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma,
Parco Area delle Scienze, 181A,

43100 Parma,ITALY
{caselli, reggiani, mazzoli}@ce.unipr.it

ABSTRACT

Motion planning is a fundamental problem in a number of application areas, including robotics,
automation, and virtual reality. The performance of motion planning is largely affected by the
underlying collision detection technique. In this paper we report the results of an experimental
evaluation of several recent collision detection libraries within the context of motion planning
for rigid and articulated robots in 3D workspaces. The libraries investigated have been chosen
based also on their free availability to the research community. Results reported in this paper
show that some of the collision detection packages investigated are very sensitive to the type of
problem to be solved, possibly determining the best performance on certain problems and proving
very inefficient or even not applicable on different problems. Other collision detection libraries
are much less sensitive to the type of problem, although they do not necessarily exhibit the best
performance on any given problem. These considerations suggest that a motion planner could
take advantage from the ability to select one among a range of collision detection libraries based
on characteristics of the problem to be solved which could be known a priori.

Keywords: motion planning, collision detection

1 INTRODUCTION

Motion planning is a fundamental problem in a
number of application areas, including robotics,
automation, and virtual reality. Given an initial
and a final configurations, the goal of the basic
motion planning problem is to find a path start-
ing at the initial configuration and terminating
at the goal configuration, while avoiding collision
with the obstacles [Gupta96]. In an application
area whose goal is to find a collision-free path,
the overall execution time is greatly affected by
the quality of the collision detection algorithm
adopted by the planner. In complete planners,
execution time is dramatically influenced by the
efficiency of collision detection. In these planners,
indeed, the whole connectivity of configuration
space (C-space) must be constructed, requiring,
for every robot configuration, a collision check
against all the obstacles in the environment. In
probabilistic planners the C-space is incrementally

explored, therefore only a subset of robot config-
urations need to be checked for collision against
obstacles. Nevertheless, in most randomized path
planner a large fraction of the overall execution
time is spent for collision detection.

We are currently developing a new path plan-
ning tool called parallel Potential Field Planner
(pPFP). pPFP is a probabilistic planner based on
a random heuristic search of the path guided by
a potential function and aims to address motion
planning of complex systems. pPFP builds upon
the approach pioneered in [Barra91, Latom91].
The goal of our tool is to overcome some of
the limitations of the early potential field ap-
proach [Barra91] and thus expand its range of
applicability, while retaining its most valuable
characteristics such as ease of use and probabilis-
tic completeness. Namely, pPFP improves plan-
ning efficiency in escaping from local potential
field minima by supplementing the random mo-



Library Research Group Available at:
Rapid Gamma Research Group (NC at Chapel Hill) http://www.cs.unc.edu/~geom/OBB/OBBT.html

V-Clip MERL - Mitsubishi Electric Research Lab. http://www.merl.com/projects/vclip/

SOLID Comp. Graph. Group (Eindhoven Univ.) http://www.win.tue.nl/~gino/solid/

V-Collide Gamma Research Group (NC at Chapel Hill) http://www.cs.unc.edu/~geom/V_COLLIDE/

PQP Gamma Research Group (NC at Chapel Hill) http://www.cs.unc.edu/~geom/SSV/

Table 1: Collision Detection Algorithms investigated.

tion strategy with more informed search strate-
gies [Casel01]. Furthermore, it integrates multi-
ple search strategies of the potential field plan-
ner into a parallel computation scheme which
proves highly effective for many degree of free-
dom (d.o.f.) problems [Casel02]. The current im-
plementation of the tool also includes exploita-
tion of past experience [Casel00]. A recent as-
sessment [Casel02] has shown that pPFP does
provide good performance on the case studies in-
vestigated so far, and we suggest that it should
be considered au pair with advanced path plan-
ners based on alternative approaches [Gupta98].
pPFP performance largely relies on a careful
choice of a suitable collision detection library
among the packages freely available to the re-
search community.

This paper reports the experimental evaluation
that supported our choice. We have restricted
our analysis to the context of motion planning
for rigid and articulated robots in 3D workspace.
The narrowness of this analysis allows the design
of tests able to measure robustness and effective-
ness of the packages investigated in the solution of
planning problems with different characteristics.

The paper is organized as follows. Section 2 pro-
vides a brief survey about the characteristics of
evaluated libraries for collision detection whose
source is free for non-commercial use. Section 3
describes the details of chosen testbeds, the ex-
perimental methodology adopted, and the perfor-
mance of evaluated collision detection algorithms
when integrated in our planner. A final section
summarizes the contributions of the paper.

2 EVALUATED COLLISION DETEC-
TION LIBRARIES

Our investigation has considered five collision de-
tection libraries. The selection was based on their
free availability for non-commercial use and on
their ability to answer to the simplest query, i.e.
whether two models touch. The libraries use
polygonal models, either relying on polygon soup
or on convex objects or objects composed of con-
vex parts.

V-Clip [Mirti98] The Voronoi Clip, or V-Clip is
a feature-based algorithm derived from the Lin-
Canny algorithm [Lin91]. Its key notion is the
Voronoi region [Meyer86] associated with every
feature (vertex, edge, or face) of a polyhedron.
Using Voronoi regions, the Lin-Canny algorithm
tracks the closest features between a pair of con-
vex polyhedra. Once these features are known,
the closest points between them, and therefore
between the polyhedra, can be determined. The
V-Clip algorithm improves Lin-Canny thanks to
its ability to handle penetration cases (a situa-
tion where Lin-Canny’s termination criteria are
never satisfied and the algorithm cycles forever)
and its robustness (Lin-Canny can cycle forever
in presence of geometric degeneracies). V-Clip
exploits routines in the Qhull library [Barbe96]
to build hierarchies of convex components from
vertex sets. When the convex decomposition has
a moderate number of parts, and the hierarchy is
only a few levels deep, V-Clip can work well even
with nonconvex objects.

The collision detection libraries coming next ex-
ploit a hierarchy of bounding volumes to reduce
the number of primitives that need to be checked
for contact. Different bounding volumes have
been proposed in an effort to find the optimal
decomposition for the conflicting goals of tight
approximation of the input objects and rapid in-
tersection test computation.

RAPID [Gotts96] The RAPID library is based
on two algorithms. The first one uses a top-down
decomposition technique that builds a hierarchy
of Oriented Bounding Boxes (OBBs) of an input
polygon soup model. An OBB is a bounding box
whose orientation is arbitrary and the resulting
hierarchy is called OBBTree. The second algo-
rithm is exploited for collision tests among OBB
pairs. The main idea is to start to verify whether
two high level OBBs overlap. If they do not over-
lap, then the two models do not collide and the
algorithm ends. Otherwise the algorithm veri-
fies the overlapping of lower level OBBs. It has
been shown that OBB overlap detection requires
only fifteen simple axis projection tests (separat-
ing axis theorem [Gotts96]). OBBs fit the object
tighter than axis-aligned boxes or spheres. This

http://www.cs.unc.edu/~geom/OBB/OBBT.html
http://www.merl.com/projects/vclip/
http://www.win.tue.nl/~gino/solid/
http://www.cs.unc.edu/~geom/V_COLLIDE/
http://www.cs.unc.edu/~geom/SSV/


results in a less deep hierarchy and, therefore, in
better performance, since a lower number of over-
lapping tests is performed.

SOLID [van d99b] The SOLID library uses two
algorithms. The first one builds a bounding vol-
ume hierarchy composed of Axis-Aligned Bound-
ing Boxes (AABB). In [van d97], van den Bergen
presents the decomposition algorithm showing a
way to speed up overlap tests between AABBs
and thus aligning AABB to OBB performance
for rigid models. For deformable models, AABB
are even faster to build and to update. The
SOLID library also exploits an enhanced version
of the Gilbert, Johnson and Keerthi (GJK) al-
gorithm [Gilbe88], which computes distance be-
tween two convex polytopes using Minkowski dif-
ference and convex optimization techniques. The
SOLID improvement over earlier GJK [Gilbe88,
Camer97] is discussed in [van d99a], along with
the obtained performance, robustness, and ver-
satility. Finally, for convex hull computation
SOLID relies on the Qhull library.

PQP [Larse99, Larse00] PQP employs a top-
down strategy to create a hierarchy of Rectangle
Swept Spheres (RSS) from a polygon soup model.
A RSS is a volume covered by a sphere whose
center is swept over a 3D rectangle. Performance
analysis comparing RSS and other type of bound-
ing volumes can be found in [Larse99] Once the
RSS tree is available, distance computation be-
tween RSSs are performed. Instead of existing
algorithms for distance computation among con-
vex shapes [Gilbe88, Lin91], a specialized algo-
rithm [Larse00] is used in order to improve effi-
ciency (decreasing the number of distance com-
putation operations), and robustness (ability to
cope with numerical errors and degeneracies).

V-Collide [Hudso97] V-Collide unifies two
framework: RAPID and I-Collide [Cohen95], a
library for collision detection whose core is the
original Lin-Canny algorithm [Lin91]. First, the
n-body sweep-and-prune algorithm of I-Collide is
used to filter collisions among a large number of
objects to determine potential overlapping pairs.
In the second stage, a pairwise test from the
RAPID library determines whether the objects
received from the first stage actually collide.

3 EXPERIMENTAL EVALUATION

In this section, we describe the details of chosen
testbeds, the adopted experimental methodology,
and the performance of evaluated collision detec-
tion algorithms when integrated in our planner.

3.1 EXPERIMENTAL SETTING

A first problem in the comparison of collision de-
tection algorithms for probabilistic motion plan-
ners is the large number of forces influencing their
performance. The complexity of the workspace
description, the type and position of the obsta-
cles, the average distance among obstacles and
robot can greatly modify the final execution time.

In the effort to cover different environments,
we designed several artificial problems in-
volving obstacles with different characteristics
(Fig. 1(a)-1(c)), and we studied also a com-
plex CAD-type environment with a rigid robot
(Fig. 1(d)) representing more realistic motion
planning problem. The CAD model was de-
signed by Boris Yamrom of the Computer
Graphics & Systems Group at GE CRD and
is available from the Robotics Laboratory of
Texas A&M University (http://www.cs.tamu.
edu/faculty/amato/dsmft/benchmarks/).

Another issue of collecting experimental results
about probabilistic planners is the high variance
in both computation time and quality of the so-
lution found (related to the path length) due to
their randomness. To account for this problem,
instances with fixed random seeds have been stud-
ied for each problem. Due to the robustness
of the evaluated collision detection algorithms,
the planner returns the same path for each in-
stance regardless of integrated algorithm. There-
fore the difference in solution time for each pre-
sented problem depends only on collision detec-
tion algorithm.

All results reported in this section have been ob-
tained with our planner [Casel00, Casel01] on a
Pentium III Xeon 550 MHz PC with 512MB main
memory.

3.2 EXPERIMENTAL RESULTS

Fig. 2 shows execution times required to solve ten
different instances of grid benchmark (Fig. 1(a)).

These instances are solved faster when the plan-
ner uses V-Clip library. Answers to collision de-
tection queries benefit of the use of this feature-
based algorithm and are therefore remarkable
quicker than using libraries exploiting hierarchies
of bounding volumes. This is an expected result
because usually this class of algorithms is faster,
and therefore preferable, when the models are
well-behaved, of moderate size, and not exceed-
ingly nonconvex [Mirti98]. Regarding the other

http://www.cs.tamu.edu/faculty/amato/dsmft/benchmarks/
http://www.cs.tamu.edu/faculty/amato/dsmft/benchmarks/


(a) (b) (c) (d)

Figure 1: Artificial environments: (a) grid benchmark: the planner is required to find a path for the
3-link, 11 d.o.f. robot when its movements are restricted in a narrow space among close obstacles
(b) hole benchmark: to reach the goal the 2-link, 7 d.o.f. robot is required to enter the narrow
hole (c) modified grid benchmark: a 8,900 triangles representation. CAD model (d) α puzzle: the
objective is to separate the intertwined tubes.

libraries, RAPID and V-Collide exhibit close av-
erage times. The “sweep-and-prune” stage of V-
Collide is usually an overhead and it is not effi-
cient enough to reduce the RAPID solution times
in this class of problems. Fig. 3 shows average ex-
ecution time to check a single configuration in a
set of instances of the grid and hole benchmarks.
Collision checking for the second problem is faster
on average. The different number of links for the
robot involved in the benchmarks only partially
justifies the lower execution time. The workspace
of the first problem is crammed with a grid ob-
stacle, this cause a large hit ratio (greater than
20% in our tests). Moreover the robot and ob-
stacles are usually close, forcing the algorithms
to descend the bounding volume hierarchies to
check the configuration for collisions. In the sec-
ond problem, instead, a single large obstacle fills
the right area of the workspace. With this obsta-
cle configuration the hit ratios are lower and the
collision detection operations are faster. To con-
firm previous experimental results, we separated
hitting and safe configurations. The resulting se-
quences lose temporal coherence but allow us to
separate the study of time required for checking
of hitting and safe configurations.

As shown in Fig. 4, time required to check con-
figurations that hit again obstacles are quite sim-
ilar for the two benchmarks. Safe configuration
checking is, instead, more expensive than hitting
configuration checking for problem 1(a), the more
obstacle crowded problem, and less expensive for
the hole problem, due to its large open area. We
found more difficult to explain why SOLID per-
forms so satisfactory in the hole benchmark. A
possible reason is that AABBs are particularly
suitable for the obstacle characteristics of this

1 2 3 4 5 6 7 8 9 10
0

50

100

150

T
im

e 
(s

ec
on

ds
)

V-Collide
RAPID
SOLID
V-Clip
PQP

Figure 2: Execution time to solve ten in-
stances of grid benchmark (Fig. 1(a)) with
different collision detection libraries.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

V-Collide
RAPID
SOLID
V-Clip
PQP

1 2 3 4 5
200
250
300
350
400
450
500

a)

b)

Figure 3: Average execution time to check
a single configuration for a) grid (Fig. 1(a);
10 sequences) and b) hole (Fig. 1(b); 5 se-
quences).



V-Collide RAPID SOLID V-Clip PQP
0

300
600
900

1200
1500

T
im

e 
(m

ic
ro

se
co

nd
s) Hit

Safe

V-Collide RAPID SOLID V-Clip PQP
0

200

400

600

800

1000

T
im

e 
(m

ic
ro

se
co

nd
s)

a)

b)

Figure 4: Average execution time (mi-
croseconds) required to check hitting and
safe configurations for a) grid (Fig. 1(a))
and b) hole (Fig. 1(b)).

V-Collide RAPID SOLID V-Clip PQP
0

300

600

900

1200

1500

Safe Configurations

V-Collide RAPID SOLID V-Clip PQP
0

200

400

600

800

1000 prob. 2 (a)
prob. 2 (c)

Hitting configurations

Figure 5: Influence of environment com-
plexity on execution time (microseconds).
Collision checking for problem 1(c) (8,900
triangles) is more expensive than prob-
lem 1(a) (100 triangles).

benchmark.

To consider the influence of environment com-
plexity on execution time we modified the grid
benchmark replacing the parallelepipeds with the
inscribed ellipsoids (Fig. 1(c)), requiring 8,900 tri-
angles for their description. As shown in Fig. 5,
average execution times for both hitting and safe
configurations increase over grid benchmark with
parallelepipeds.

Last test is a complex CAD-type environment
with rigid robots (Fig. 1(d)) consisting of two
tubes, each twisted into an alpha shape; one tube
is the obstacle and the other is the moving ob-
ject (robot). The problem representation requires
1,008 triangles for each tube and the hit ratio
of the sequence of configurations checked to find
the final path is high (ranging from 30 to 40% of
checked configurations in a set of ten solutions).

V-Collide RAPID SOLID

56.30 56.44 299.19
42.33 42.45 157.53
190.43 192.17 1007.35
15.46 15.76 33.15
29.26 29.38 88.73
165.32 166.22 967.11
86.40 87.24 364.21
29.66 29.16 84.18
25.48 25.34 132.27
46.49 46.52 251.64

Table 2: α puzzle execution time (ten dif-
ferent random seeds).

1 2 3 4 5 6 7 8 9 10

600

750

900

1050

1200

T
im

e 
(m

ic
ro

se
co

nd
s)

V-Collide
RAPID
PQP

Figure 6: Average execution time to check
a single configuration for the α puzzle with
different collision detection libraries.

Feature-based or simplex-based algorithms such
as Lin-Canny [Lin91] and GJK [Gilbe88], usu-
ally perform poorly when models are complex and
non-convex. As shown in Table. 2, the planner
with Solid is, indeed, two to six time slower than
the planner with V-Collide or RAPID for this α
puzzle.

Once again (Fig. 6),V-Collide and RAPID per-
formances are comparable, while PQP suffers the
high value of the hit ratio.

According to experimental results, V-Clip, a
feature-based algorithm, is always faster and
therefore should always be chosen when the mod-
els are well-behaved, of moderate size, and not ex-
ceedingly non-convex [Mirti98]. When the envi-
ronment does not suit V-Clip requirements, either
V-Collide or RAPID should be exploited for robot
configuration checking. PQP execution times are
close to V-Collide and RAPID ones but its per-
formance seems negatively influenced by high hit
ratios. Finally, SOLID should be used only with
problems with narrow passages and space among
obstacles large compared to robot dimensions.



4 CONCLUSIONS

In motion planning the overall execution time to
find a collision-free path is greatly affected by
the quality of the collision detection algorithm
adopted by the planner. Results reported in this
paper show that some of the collision detection
packages investigated are very sensitive to the
type of problem to be solved, possibly determin-
ing the best performance on certain problems
and proving very inefficient or even not appli-
cable on different problems. Therefore, the user
should choose carefully the collision detection li-
brary when the characteristics of the problem are
known a priori. Nevertheless, despite the number
of survey on collision detection algorithms avail-
able from the literature [Lin98, Jimen, Jimen01],
none of these works presents a speed comparison
of the different libraries. Only partial experimen-
tal results can be found in [Mirti98], comparing
speeds of Lin-Canny, Enhanced GJK e V-Clip al-
gorithms and in [Larse99], comparing efficacy of
different bounding volume trees.

The main contribution of this paper is a care-
fully experimental evaluation of collision detec-
tion packages for probabilistic motion planners.
The narrowness of this analysis allowed the de-
sign of tests able to measure robustness and effec-
tiveness of the investigated packages. In the near
future we plan to study SWIFT++ [Ehman01],
a new library recently released by the Gamma
Research Group, whose performance are quite
promising.

ACKNOWLEDGMENTS

We would like to thank Cristian Marastoni for the
assistance with the integration and evaluation of
PQP library. We would also thank the Research
Groups that made available their collision detec-
tion software to the research community and prof.
Nancy Amato (Texas A&M University) for the al-
pha puzzle benchmark.

Work on this paper has been supported in part
by MURST, Italy (Project ISIDE, Sviluppo di sis-
temi di elaborazione reattivi ed affidabili per appli-
cazioni industriali) and by a research project sup-
ported by ENEA on ’parallel visualization tech-
niques for robot systems’.

REFERENCES

[Barbe96] B. C. Barber, D. P. Dobkin, and
H. Huhdanpaa. The quickhull algorithm for

convex hulls. ACM Transactions on Math-
ematical Software, 22(4):469–483, 1996.

[Barra91] J. Barraquand and J.-C. Latombe.
Robot motion planning: a distributed rep-
resentation approach. Internation Journal
of Robotics Research, 10(6):628–649, 1991.

[Camer97] S. Cameron. Enhancing GJK: com-
puting minimum and penetration distance
between convex polyhedra. In IEEE Inter-
national Conference on Robotics and Au-
tomation, Albuquerque, NM, 1997.

[Casel00] S. Caselli and M. Reggiani. ERPP: an
Experience-based Randomized Path Plan-
ner. In IEEE International Conference
on Robotics and Automation, S. Francisco,
CA, 2000.

[Casel01] S. Caselli, M. Reggiani, and R. Roc-
chi. Heuristic methods for randomized path
planning in potential fields. In IEEE In-
ternational Symposium on Computational
Intelligence in Robotics and Automation,
Banff, Alberta, Canada, 2001.

[Casel02] S. Caselli, M. Reggiani, and R. Sbra-
vati. Parallel Path Planning with Multiple
Evasion Strategies. submitted to the IEEE
International Conference on Robotics and
Automation, 2002.

[Cohen95] J. D. Cohen, M. C. Lin, D. Manocha,
and M. K. Ponamgi. I-Collide: an inter-
active and exact collision detection system
for large-scale environments. ACM Int. 3D
Graphics Conference, 1, 1995.

[Ehman01] S. A. Ehmann and M. C. Lin. Ac-
curate and fast proximity queries between
polyhedra using convex surface decompo-
sition. In Eurographics 2001, Manchester,
UK , 2001.

[Gilbe88] E. G. Gilbert, D. W. Johnson, and S.
S. Keerthi. A fast procedure for comput-
ing the distance between complex objects
in three dimensional space. IEEE Journal
of Robotics and Automation, 4(2):193–203,
1988.

[Gotts96] S. Gottschalk, M. C. Lin, and
D. Manocha. OBBTree: a hierarchical
structure for rapid interface detection. In
ACM Siggraph, 1996.

[Gupta96] K. Gupta. Pratical motion planning:
An overview and state of the art. In
Workshop on Pratical Motion Planning in
Robotics: Current Approaches and Future
Directions, Minneapolis, MN, 1996.



[Gupta98] K. Gupta and A. P. del Pobil. Pratical
Motion Planning in Robotics: Current Ap-
proaches and Future Directions. Addison
Wesley, 1998.

[Hudso97] T. Hudson, M. Lin, J. Cohen,
S. Gottschalk, and D. Manocha. V-
COLLIDE: accelerated collision detection
for VRML. In 2nd Annual Symposium
on the Virtual Reality Modelling Language,
Monterey, CA, 1997.

[Jimen] P. Jimenéz, F. Thomas, and C. Torras.
Collision detection algorithms for motion
planning. In J.-P. Laumond, editor, Robot
motion planning and control, number 229,
chapter 6. Lecture Notes in Control and In-
formation Sciences.

[Jimen01] P. Jimenéz, F. Thomas, and C. Torras.
3D collision detection: a survey. Comput-
ers and Graphics, 25(2):269–285, 2001.

[Larse99] E. Larsen, S. Gottschalk, M. C. Lin,
and D. Manocha. Fast proximity queries
with swept sphere volumes. Technical
Report TR99-018, Department of Com-
puter Science, University of North Car-
olina, Chapel Hill, 1999.

[Larse00] E. Larsen, S. Gottschalk, M. C.
Lin, and D. Manocha. Fast distance
queries with rectangular swept sphere vol-
umes. In IEEE International Conference
on Robotics and Automation, San Fran-
cisco (CA), 2000.

[Latom91] J.-C. Latombe. Robot Motion Plan-
ning. Kluwer Academic Press, 1991.

[Lin91] M. C. Lin and J. F. Canny. A fast al-
gorithm for incremental distance calcula-
tion. In IEEE International Conference
on Robotics and Automation, Sacramento
(CA), 1991.

[Lin98] M.C. Lin and S. Gottschalk. Collision de-
tection between geometric models: a sur-
vey. In IMA Conference on Mathematics
of Surfaces, 1998.

[Meyer86] W. Meyer. Distance between boxes:
applications to collision detection and clip-
ping. In IEEE International Conference on
Robotics and Automation, San Francisco
(CA), 1986.

[Mirti98] B. Mirtich. VClip: fast and robust
polyhedral collision detection. ACM Trans-
action on Graphics, 17(3):177–208, 1998.

[van d97] G. van den Bergen. Efficient collision
detection of complex deformable models
using AABB trees. Journal of Graphic
Tools, 4(2):1–13, 1997.

[van d99a] G. van den Bergen. A fast and robust
GJK implementation for collision detection
of convex objects. Journal of Graphics
Tools, 2(4):7–25, 1999.

[van d99b] G. van den Bergen. User’s guide to
the SOLID interference detection library,
1999.


	INTRODUCTION
	EVALUATED COLLISION DETECTION LIBRARIES
	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETTING
	EXPERIMENTAL RESULTS

	CONCLUSIONS

