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Abstract 

We describe a transformational derivation system that 
semi-automatically derives a simplified version of 
Mycin's therapy selection algorithm. It uses general 
transformation rules to explicitly integrate the 
multiple, sometimes conflicting goals that govern the 
design of heuristic algorithms. The generality of its 
transformations is demonstrated by using them to 
derive a variation based on formulating and 
integrating the same design goals differently. 

I I n t r o d u c t i o n 
Design of complex artifacts like programs, circuits, 

and buildings requires the integration of multiple, 
possibly conflicting design goals. Thus knowledge-
based design systems ought to represent and reason 
about multiple design goals, since the better they 
"understand" the design process, the more intelligent 
the assistance they can provide. Current design 
systems tend to lack this capability. Either they fail 
to address multiple goals, or decisions that integrate 
particular goals and resolve specific conflicts are 
implicit ly precompiled into their knowledge base by a 
manual knowledge engineering process [Mostow k 
Swartout 86]. To remedy this deficiency, we need 
better models for explicitly reasoning about multiple 
goals in design (and other knowledge-intensive 
problem-solving tasks) [Mostow 85]. 

One kind of intelligent design assistance is the 
ability to explain various features of the designed 
artifact. In the case of program design, [Swartout 
83] points out that many questions about the designed 
artifact cannot be answered satisfactorily without 
referring to its development history, usually by asking 
its developer. For example, if a program feature 
depends on a particular manner of integrating certain 
design goals, explaining this feature involves referring 
to the design moves that carried out the integration, 
and the design rationale that motivated them [Neches 
et al 85]. Thus automating such explanations would 
require explicitly representing this design history 
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information in machine-understandable form. 
Automated explanation is just one motivation for 
developing better models of goal integration in 
design; [Mostow 85] describes a host of others. 

We have chosen to investigate this problem in the 
domain of heuristic algorithm design. To explore the 
kinds of knowledge and reasoning needed to integrate 
multiple design goals in this domain, we rationally 
reconstructed a simplified version of Mycin's therapy 
selection algorithm [Clancey 84], chosen because it 
tries to satisfy several conflicting design goals. We 
identified three kinds of goals: 

• D o m a i n goals (here: medical goals) 
prescribe the algorithm output. 

• A l g o r i t h m goals govern the algorithm's 
performance. 

• Design process goals dictate the resources 
available to the design process, such as the 
time wi th in which the algorithm design 
must be completed. 

In particular, we chose to address the following 
representative sample of the Mycin design goals listed 
in [Mostow & Swartout 86]: 

• D o m a i n goals: 
o Maximize drug effectiveness. 
o Minimize the number of drugs in the 

therapy, 
o Avoid contra-indicated therapies. 

• A l g o r i t h m goals: 
o Maximize time efficiency. 
o Maximize space efficiency. 

We encoded, in the form of domain-independent 
transformation rules, the general knowledge needed to 
integrate these goals and incorporate them into an 
algorithm. We call the resulting algorithm RMTSA, 
for Reduced Myc in Therapy Selection Algor i thm. 
Given a set of drugs, the RMTSA is to generate the 
therapy (subset of drugs) that best satisfies the above 
medical goals, while not violating any of the algorithm 
goals. Notice the potential conflict among the medical 
goals in situations where they cannot all be satisfied 
perfectly. While design process goals influence the 
design, we have not modelled them explicitly in the 
system. 
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I I The model of algori thm design 
We model algorithm design as a transformational 

derivation process leading from an initial specification 
to an executable algorithm. Our algorithm design 
states consist of two parts, a dataflow graph and an 
agenda of design goals. The dataflow graph consists 
of algorithm components such as memories, mappings, 
filters, selectors, searches, and collects, whose input and 
output ports are connected through dataflow links. 
The agenda lists the design goals not yet incorporated 
in the algorithm being designed. Design operators 

• transform a partially designed algorithm so 
as to incorporate, pursue, or avoid violating 
a design goal, 

• integrate multiple, possibly conflicting, 
design goals into a combined goal, or 

• reformulate a design goal to enable the 
application of another design operator. 

We adopted the ideas of using dataflow graphs and 
allowing non-correctness-preserving transformation rules 
from [Kant & Newell 83, Kant 85, Steier & Kant 85]. 

pointers to preceding and succeeding algorithm 
components. 

The semantics of each component type (memory, 
mapping, test, filter, search, and collect) is 
operationally defined by a rule for compiling it into 
Interlisp code [Teitelman 78]. A dataflow graph is 
compiled into its corresponding code by compiling each 
of its components and appropriately nesting the 
resulting pieces of code. The dataflow graph 
representation of the algorithm is executable if all its 
components are executable. In order for a component 
(or rather its compilation) to be executable, the 
component must not contain any non-operational 
statements. Otherwise, more transformations are 
needed to operationalize the component. The $Search 
component is an example of a compound component, 
which can include other algorithm components within 
its own internal structure (see Figure I I I - l ) . The 
$Search schema has slots .Set for the choice set, .Map 
for the mapping function (identity as default), and 
.When for one or more filters (TRUE as default). 

We have not attacked the problem of automatically 
controlling the selection of transformation rules. We 
avoided all issues of control by alternating user 
selection of a supposedly suitable transformation rule 
from the ful l set of rules, with automatic application 
of this rule to the current algorithm design state. 

Our system models the design of algorithms like the 
one shown below, consisting of a cascade of generators, 
mappings, filters, and sorters. 

IV The in i t ia l a lgor i thm design state 
We take the specification for the design of the 

RMTSA as the initial state of our derivation. Figure 
IV-1 shows the algorithm specification formulated in 
our representation. 

Init ial dataflow graph: 

I I I A note on representation and 
implementat ion 

Our system is implemented in LOOPS, an object-
oriented programming environment developed at 
Xerox [Bobrow 85]. Algorithm components, design 
goals, and data input to the algorithm are represented 
as objects. Links between the components of a 
dataflow graph are represented as slots that contain 
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The init ial specification of the RMTSA consists of an 
init ial dataflow graph and an init ial agenda of design 
goals. The dataflow graph has two components. The 
mapping component S SubSetsl enumerates all subsets 
of the input set. It is followed by the selecting 
component $NDSelect, which non-deterministically 
selects from its choice set of therapies (subsets of 
drugs) a therapy that best satisfies the domain goals 
(.DomainGoals) without the algorithm violating any 
algorithm goals (.AlgrthmGoals). The agenda of 
design goals lists three domain goals and two 
algorithm goals. 

V Der ivat ion of R M T S A 1 : f irst example 
We now derive the RMTSA, introducing 

transformation rules as needed, and showing those 
portions of the resulting algorithm design state where 
changes have occurred. 

The init ial algorithm design state appeared in Figure 
IV -1 . It lists $fewer-contra-indications as one of its 
domain goals. The transformation rule 
T r e a t G o a l As Cons t ra in t treats this goal as a 
constraint. The cut-off value for thresholding — here 0 
— is provided by the system developer to indicate that 
no contra-indications wi l l be tolerated. The result of 
thresholding is a new predicate, $Pred31, that returns 
TRUE if the number of contra-indicated drugs in a 
given therapy is less than or equal to this cut-off 
value. 

T rea t Goa l AsCons t ra in t : Treat goal G as 
a constraint. Do so by thresholding using a 
user-provided cut-off value. 

Application of RefineSelect To Search replaces the 
non-deterministically selecting component S NDSelectl 
by a newly created search component $Search30. 

Ref ineSelectToSearch: Replace non-
deterministic selection of an element 
according t o c o n s t r a i n t s b y a 
search for this element. 

At this stage, $ Search 30 appears still in default 
format, and is operational. In fact, the entire 
algorithm is operational. However, since no goals 
have been incorporated yet, it would return the first 
generated subset of drugs, not the therapy that best 
satisfies the domain goals. 

Next, we apply the transformation 
I nco rpo ra teCons t ra in t s to the contra-indications 
constraint (now predicate $Pred31) in order to 
incorporate it into $Search30. 

Inco rpo ra teCons t ra in t s : To incorporate 
constraints Cv ..., Cn on a selected 
element, use them to filter the choice set. 

Then transformation rule Cons t ra in t T o F i l t e r creates 
a fi lter component($PFilt31) for IPred31. The last 
step is needed since in our representation only 
components, not predicates, are compilable into 
executable code. 

C o n s t r a i n t T o F i l t e r : Reformulate 
constraint C as a filter. 

We obtain the algorithm design state shown. 

with:$Search30.When = ($PFilt31) 

The goals $ more-drug-effectiveness and Ifewer-drugs 
are converted into preferences by applying 
TreatGoalAsPreference twice, once to each goal. 

T rea tGoa lAsPre ference: Treat goal G as 
a preference. 

Only the agenda of design goals has changed. 
.Domain Goals = NIL 

.Preferences = ($more-drug-effective $fewer-drugs) 
We can now use Sor tByPreferences to incorporate 

the preferences. The resulting dataflow graph wil l 
generate possible therapies, sort them according to the 
preferences, and search for the first one that satisfies 
the constraints. 

Sor tByPreferences: To incorporate one or 
more preferences P1, ..., Pn on a selected 
element, use them to sort the choice set. 
If mark the preferences for 
integration. Additional effect: reduces 
average runtime. 

w i th : $Sort30.SortCrit = 
( *COMBINE* tmore-drug-effective S fewer-drugs) 
.Preferences = NIL 

In order to reduce the space cost of our algorithm, 
we now use CondensePreference to condense Smore-
drug-effectiveness into 3 categories; we pretend we 
have been given this number by a domain expert. 

CondensePreference: To help minimize 
space, condense a preference P into N 
categories. 

We now notice a type clash: the input to $Sort30 is 
a set of drugs, whereas $more-drug-effective in the sort 
criterion compares individual drugs. Consequently, we 
extend the preference $more-drug-erTective into one 
that allows the comparison of sets of drugs. Here the 
type clash is resolved by defining a new preference, 
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$ more-therapy-effective, which distinguishes between 
bags of drugs [Mostow $ Swartout 86). Depending on 
the kind of type clash and its context, other measures 
might be needed. 

The changes brought about by condensing and bag-
extending Smore-drug-eiTective are not reflected in the 
dataflow graph or the goal agenda. Apart from the 
creation of a new preference, the changes have taken 
place in the internal specification of $ more-drug-
effective. The internal specifications of the domain 
goals are stated in rather unreadable LISP code, so we 
spare the reader the details. 

The transformation Con jo in Preferences integrates 
the preferences $more-therapy-effective and $fewer-
drugs. 

ConjoinPreferences: To combine two 
preferences P and Q, form their logical 
conjunction P A Q . 

This step creates a preference $ better- therapy, which 
becomes the new sort criterion in $Sort30.SortCrit. 

with:tSort30.SortCrit = $better-therapy 

A final transformation pursues the algorithm goal 
$less-time-cost. 

P reComputeData : To help reduce run­
time, precompute data known at design 
time. 

Here it precomputes the data provided by the 
dataflow subgraph consisting of the components 
S SubSetsl and $Sort30, which depend only on 
information known at design time. Precomputation 
eliminates the costly sorting from the algorithm, by 
abstracting the elements of the choice set (therapies) 
to therapy profiles, sorting the profiles according to 
the sort criterion, and storing the sorted list of 
profiles in a table. At runtime, the algorithm wil l use 
this precomputed table to generate the equivalence 
classes of therapies matching each successive profile, 
thereby generating therapies sorted according to the 
original sort criterion. The next two diagrams 
summarize this transformation step. 

Before PreComputeData : 

At run time, the algorithm uses the presorted list of 
profiles, or "instruction table'' (as it is called in 
Mycin), to generate therapies in sorted order according 
to the sort criterion Sbetter-therapy. An instruction, 
for example "(2 0 0) ' \ means "Compose a therapy by 
selecting two drugs from drug effectiveness category 1, 
and no drugs from categories 2 and 3'\ Therapies 
matching the sorted profiles are tested for contra­
indications, and the first therapy with none is 
returned. 

Notice that the instruction table is actually just a 
small portion of the entire table that would have been 
computed if we had not instructed our profile 
generator to produce only a subset of all possible 
profiles. In our implementation, we contented 
ourselves with generating 15 profiles, which we reduced 
further by selecting only profiles that we considered 
"realistic". For example, if acceptable therapies never 
contain more than 5 drugs, then the profile "(3 1 2)" 
prescribing 6 drugs is not realistic. To keep the set 
of profiles finite, we chose not to generate any profiles 
that use more than 5 drugs. 

Presorting the profiles requires some design-time 
interaction. Since $more-therapy-effective defines a 
partial order, $ better-therapy is partial too. For 
instance, it does not determine whether the profile 
"(2 0 0)" (two first choice drugs) is better than "(0 1 
0)" (one second choice drug). In situations like this, 
the rule prompts the system developer to make the 
decision based on domain knowledge. Ideally, the 
expert should also be required to explicitly formulate 
the reasons for the decision, or say if it is arbitrary. 
These reasons could then be recorded and used to 
eventually linearize partial orders. 

The design of RMTSA terminates after the 
application of P reComputeData . The criteria for 
successful termination of the design process are 
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fullf i l led. Al l domain goals have been incorporated 
into the algorithm and have been reformulated and 
integrated so that the algorithm is fully operational. 
Further, the algorithm satisfies the posted algorithm 
goals. A design would terminate in failure if one or 
more of the domain goals or algorithm performance 
goals could not be satisfied by applicable 
transformation rules. 

To summarize, we show the rule tree underlying the 
derivation of RMTSA1 . A longer version of this 
paper [Mostow & Voigt 87] presents the LISP code 
corresponding to the final algorithm, and a 
demonstration of its executability. 

VI R M T S A 2 : a var iat ion 
To test the generality of the transformation rules, we 

applied them to a variation of the RMTSA problem. 
The variation starts out wi th the same initial 
algorithm design state as for R M T S A l , except for the 
algorithm goals $less-time-cost and $less-space-cost. 
The design diverges from the previous derivation when 
we formulate the goal tfewer-contra-indications as a 
preference and all the other goals as constraints. The 
resulting algorithm, shown below, returns the therapy 
wi th fewest contra-indications, subject to constraints 
on its effectiveness and number of drugs. It generates 
possible therapies, sorts them by the number of 
contra-indicated drugs they contain, and outputs the 
first one that has at most two drugs and passes a 
minimum effectiveness threshold. 

[Mostow & Voigt 87] details the derivation, the 
final state, and the result of compiling and executing 
it. The variation produces substantially different 
behavior from the original version: different questions 
are asked at design and runtime, and different 
therapies are output. Nonetheless, the nature of the 
design task remains very similar to the first example. 
The same rules apply; only the thresholding 
transformation had to be slightly modified. Some 
additional coding was necessary to enhance the design 
goal representations. The need to add information 
about the goals is not surprising, and can be viewed 
as feedback from implementation to 
specification [Swartout 83]. 

A summary of the derivation is shown below. 

V I I Conclusion 
We have demonstrated how transformation rules can 

convert an initially non-operational algorithm 
specification into an operational algorithm so as to 
satisfy multiple, interdependent, and sometimes 
conflicting design goals. We hope to have given an 
impression of the various reformulation steps needed to 
incorporate domain goals into an algorithm, and of 
how performance goals shape the algorithm. 
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In retrospect, we identify four types of knowledge 
that enter the design process: domain knowledge, 
algorithm knowledge, goal knowledge, and control 
knowledge. In our example, domain knowledge 
describes the medical domain in which therapy 
selection takes place. Algorithm knowledge describes 
various algorithm components, prescribes how to 
combine these components into an algorithm, and tells 
how to judge the performance of an algorithm. Goal 
knowledge describes goals and the operators for 
reformulating and integrating thern. We feel that this 
"goal space" requires further investigation. 

In our implementation, we have represented in the 
computer enough medical, algorithm, and goal 
knowledge to design the RMTSA. Interaction wi th a 
human expert compensates for the system's lack of the 
experiential knowledge needed to set thresholds, 
determine the number of categories for condensing, etc. 
Manual selection of transformation rules simulates the 
considerable control knowledge needed to guide the 
algorithm design process to an acceptable solution. 

An interesting step towards explicit representation of 
such control knowledge would be to automate the 
reasoning that influences the formulation of a goal as 
a preference or constraint. Comparing the two 
derivations, we can see the strong effect of such 
choices on the resulting algorithm. One heuristic is to 
formulate conflicting goals as preferences. This 
heuristic assumes that goal conflicts can be detected 
early in the design process. 

A design aid that explicitly deals with design goals 
and their conflicts should be superior to the current 
practice of engineering implicit solutions to such 
conflicts by hand, leading to behavior that cannot be 
adequately explained. Although we have not bui l t an 
explanation component, our example derivations 
contain the information needed to answer such 
questions as why the two algorithms produce different 
therapies as solutions, and whether the generation of 
one therapy before another is based on genuine 
domain knowledge or is just an artifact of the 
implementation. 
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