
Explanation-Based Generalization
in a Logic-Programming Environment*

Haym Hirsh
Computer Science Department

Stanford University
Stanford, CA 94305

Abstract

This paper describes a domain-independent implemen­
tation of explanation-based generalization (EBG) within
a logic-programming environment. Explanation is inter­
leaved with generalization, so that as the training instance
is proven to be a positive example of the goal concept,
the generalization is simultaneously created. All aspects
of the EBG task are viewed in logic, which provides a
clear semantics for EBG, and allows its integration into
the logic-programming system. In this light operationally
becomes a property requiring explicit reasoning. Addition­
ally, viewing EBG in logic clarifies the relation of learning
search-control to EBG, and suggests solutions for dealing
with imperfect domain theories.

I Introduct ion

Mitchell, Keller, and Kedar-Cabelli (1986) present a
unifying framework for an explanation-based approach to
generalization. Its underlying idea is to form an explana­
tion structure (such as a plan or a proof tree) for a spe­
cific situation, and generalize the explanation structure so
that it applies to a wider range of situations. Explanation-
based generalization (EBG) uses a logical representation
for knowledge, and an inferential view of problem solving.
DeJong and Mooney (1986) suggest a more general term,
explanation-based learning (EBL), to also cover systems
that may specialize knowledge using information from an
explanation structure. They take a problem-space view
of problem-solving, in which generalization is a method of
acquiring schemata for problem solving.

* Discussions with Paul Rosenbloom, Devika Subramanian, Ray
Mooney, Smadar Kedar-Cabelli, Stuart Russell, Rich Keller, Allen
Van Gelder, and Michael Genesereth had a significant impact on this
work. Comments by Paul Rosenbloom, Marianne Winslett, Stuart
Russell, and Jane Hsu on earlier drafts of this paper were invaluable.
MRS has been developed by the Logic Group at Stanford University;
the EBG program was written on top of the existing MRS architec­
ture, and incorporates modified versions of Jeff Finger's RESIDUE
method (Finger and Genesereth 1985). Computing resources were
funded in part under NIH grant RR-00785 from the Division of Re­
search Resources Biomedical Research Technology Program. The ar­
rangement of facilities at ISI by Norm Sondheimer and Bob Neches
for work on this paper is greatly appreciated.

This paper describes the result of viewing all aspects
of EBG in the logical formalism of the MRS logic-
programming system (Russell 1985). MRS provides many
forms of inference, including forward-chaining, backward-
chaining, resolution, and residues (a form of abduction that
has many similarities to EBG), and allows specification of
proof strategies in meta-level theories. The underlying rep­
resentation of MRS is logic. A user provides the system
with a set of rules, and selects a form of inference with
which facts are to be proved. The discipline of logic pro­
vides a clear semantics for EBG, and allows integration of
EBG with other logic-inference methods. Under such strict
formal representation it becomes possible to reason about
operationality, as well as provide a consistent framework
for learning search control in EBG. It furthermore clarifies
the difficulty of imperfect domain theories in EBG, and
suggests some solutions to this problem.

I I Framework

The logical framework of Mitchell, Keller, and Kedar-
Cabelli was taken as the appropriate starting point for this
work. EBG takes knowledge (rules and facts) about a goal
concept, an instance of the concept, and operationality
of predicates. Given a specific instance of a concept (the
training instance), and knowledge about that concept (the
domain theory), the task for EBG is to find a definition of
the concept expressible in terms of operational predicates.
It does this by using the domain theory to prove that the
instance is an example of the goal concept, generalizing the
proof to find an operational description of a larger class of
instances that are verifiable examples of the goal.

I l l Example

This framework for EBG is illustrated using the Safe-
To-Stack example from Mitchell, Keller, and Kedar-Cabelli
(1986). Given the following facts about two objects, Objl
and 0bj2, that satisfy Safe-To-Stack(0bjl ,0bj2),

Hirsh 221

•Throughout this paper variables begin with lower-case letters and
are assumed to be universally quantified. All relations, including <,
are written in prefix form, and n-ary functions are written as n+l-ary
relations, with the result as the additional n+lst argument.

Figure 1: Explanation structure (proof tree) for
Safe-To-Stack(0bj1,0bj2)

I V I n t e r l e a v e d E x p l a n a t i o n a n d

G e n e r a l i z a t i o n

As just described, the task of EBG is to prove that
an instance is an example of a concept, and generalize
the proof to form an operational description of the con­
cept. These two stages, explanation and generalization,
are typically done sequentially: after creating a proof, a
generalization step forms the operational description from
the proof. This work takes a different approach—the two
stages are done simultaneously. The system attempts to
prove that the instance is an example of the concept (such
as Safe-To-Stack(0bjl,0bj2) above) by backward chain­
ing on the goal through rules until training-instance facts
are reached. However, each time a rule is used, it is simul­
taneously applied backward to the variablized goal concept
(such as Saf e-To-Stack(v2, v3)), creating the generalized
explanation structure in parallel with the instantiated ex­
planation structure.

EBG is started on a specific goal, such as Safe-To-
Stack(0bj l ,0bj2). The first step is to find all rules that
could potentially conclude this fact, namely all those whose
consequent unifies with the goal concept. They are

Not(Fragile(y))->Safe-To-Stack(x,y)

and

Lighter(x,y)->Safe-To-Stack(x,y).

The first is tried (since it occurs earlier in the data-

222 KNOWLEDGE ACQUISITION

0n(0bj1,0bj2)
Isa(Obj1,Box)
Isa(0bj2,Endtable)
Color(Obj1,Red)
Color(Obj2,Blue)
Volume(Obj1,1)
Densi ty(0bj l ,0.1) ,

and rules about the safety of stacking one object on an­
other (with appropriate procedural attachment for " x "
and "<") , *

Hot(Fragile(y))->Safe-To-Stack(x,y)
L ighter(x,y) —>Safe-To-Stack(x,y)
Volume(pl ,v l)ADensi ty(p l ,d l)Ax(v l ,d l ,wl)

-►Weight(pi,wl)
Isa(pl,Endtable)-+Weight(pl ,5) [Default Rule]
Weight (p1,w1)AWeight(p2,w2)A<(wl,w2)

-♦Lighter(p1,p2),
and facts about the operationally of predicates

Operational(Volume(p,v))
Operational(Density(p,d))
Operational(0n(x,y))
Operational(Color(p,c))
Operational(Isa(x,o))
Operational (x (x, y, z))
Operat ional(<(x,y)) ,

the EBG system should verify that the training instance is
indeed a correct example of Safe-To-Stack, and general­
ize its verification to form a rule specifying a larger set of
cases that are Saf e-To-Stack:

Volume(v2,v37)ADensity(v2,v38)
Ax(v37,v38,v33)
AIsa(v3 .Endtable) A< (v33,5)

->Safe-To-Stack(v2,v3).

EBG constructs a proof that the example satisfies the
goal, as in Figure 1. This proof is generalized, result­
ing in the generalized explanation structure for Safe-To-
Stack(v2,v3) shown in Figure 2. The conjunction of the
operational predicates (Volume, Density, x, Isa, and <)
in the generalized proof form a condition on the general­
ized goal predicate. Mooney and Bennett (1986) provides
more detail on three other versions of EBG. Further detail
on the implementation of EBG for this work follows.

Safe-To-Stack(v2,v3)

Lighter(v2,v3)

Density(v2,v49) X(v48,v49,v42)

Weight(v2,v35) Weight(v3,v36) <(v35,v36)

Figure 3: Generalized explanation structure (proof tree)
for Safe-To-Stack(0bjl,0bj2) when Weight(p,v) is op­
erational

Figure 2: Generalized explanation structure (proof tree)
for Safe-To-Stack(0bjl,0bj2)

base), and generates the subtask Not (Fragile (Obj2))
by unifying the consequent of the rule with Safe-
To-Stack(0bjl,0bj2) and applying the binding list thus
formed to the antecedent of the rule. The antecedent be­
comes the new subtask. The generalized subtask
Not (Fragile (v2)) is generated in the same way, by unify­
ing the consequent of the rule with the generalized form of
the original task, Sale-To-Stack(v2,v3)*, and applying
the resulting bindings to the antecedent of the rule, re­
sulting in a new generalized subtask. Thus the generalized
explanation structure is formed in parallel to the formation
of the instantiated explanation structure.

Not (Fragile (Obj2)) fails (for lack of applicable rules),
so the system backtracks to the earlier goal Safe-To-
Stack(0bj l ,0bj2), and its generalization, Safe-To-
Stack(v2,v3). The second rule is now tried, resulting
in Lighter (0 b j l , 0bj2) and Lighter (v2,v3). The back­
ward-chaining process continues, at each step unifying both
the current task and its generalization with the conse­
quents of rules and applying the resulting bindings to the
antecedents to obtain new subtasks. Failure to prove a
subtask causes backtracking to an earlier subtask for a dif­
ferent rule selection or variable binding. Backtracking also
occurs if a subtask is proved, but yet the subtask's gen­
eralization is not operational, since EBG must generate
an operational definition of the concept. Note that back­
tracking removes all record of failed attempts to prove the
task, and thus erroneous proof paths will affect neither the
explanation structures, nor EBG's final learned rule.

•The generalized form of the first goal (Safe-To-Stack(v2,v3)
here) is created by simply taking the non-unified consequent of the
rule used to backward chain from the instantiated initial goal.

The above description of backward-chaining on gener­
alized goals while creating the proof has one exception. If
a generalized subtask is ever operational, but the instan­
tiated subtask requires further proof, the system merely
continues normal proof of the subtask alone. This causes
EBG to find more general operational definitions than it
might otherwise form. The current generalized subtask be­
comes a terminal node in the developing generalized expla­
nation structure, without inclusion of any of the subtasks
that occur below it. For example, if Weight is operational
(i.e., Operational (Weight (p1 ,w1)) is in the database for
Safe-To-Stack), the resulting generalized explanation
structure will be that of Figure 3.

The final step of EBG is to form the conjunction of
terminal nodes of the generalized explanation structure,
and create a rule with this conjunction as the antecedent
and the top goal of the generalized explanation structure
as its consequent. All bindings formed during creation of
the generalized explanation structure are applied to this
rule, to handle interacting subgoals correctly. The result­
ing rule is the final result of EBG. Thus

Weight (v2,v35)AWeight(v3,v36)A<(v35,v36)
->Safe-To-Stack(v2,v3)

would be the rule learned for the preceding example in
which Weight is operational.

DeJong and Mooney (1986) point out that there is of­
ten more than one way to prove that an example is indeed
an instance of a concept, and each such differing proof can
result in a different rule from EBG. Thus, for example,
if the training-instance data for Ob j 2 included knowledge
for concluding Not (Fragile (Obj2)), there would be two
ways to prove Safe-To-Stack(Objl ,0bj2), and thus two
rules could be created by EBG, depending on which proof
was chosen. As discussed in Section VI I , such selection
is deterministically specified by the order of rules in the

Hirsh 223

domain theory—whichever knowledge came first, fragility
or weight, would succeed in creating a proof. However,
logic programming systems often provide a means for find­
ing multiple results due to alternative inferential paths.
In MRS, if the plural form of an inference method is se­
lected, MRS finds all conclusions that can be found with
the specified inference method. Since EBG has been imple­
mented as an additional form of inference for MRS, EBGS
was also implemented, to allow creation of all rules that
can be formed from all possible proofs of the training in­
stance. Furthermore, meta-level knowledge can be used to
specify which rule to select at any point, thus determin­
ing which explanation EBG will form, and hence what the
final learned rule will be.

V O p e r a t i o n a l i t y

Operationality criteria are one of the inputs that
Mitchell, Keller, and Kedar-Cabelli specify for their EBG,
but the only operational definition they give for it is "The
concept definition must be expressed in terms of the predi­
cates used to describe examples . . . or other selected, easily
evaluated, predicates from the domain theory." It is only
a small extension to allow specification of any set of pred­
icates, such as including Weight in the example above.
However, DeJong and Mooney (1986) and Mooney and
Bennett (1986) point out that such simple selection of op­
erational predicates is insufficient, and provide examples
in which operationality is a function of the proof struc­
ture. In one such example they define operationality to
be predicates at terminal nodes of the generalized expla­
nation structure after all predicates that only support Isa
facts are removed. This dynamic operationality cannot be
supported in EBG as described by Mitchell, Keller, and
Kedar-Cabelli.

Another example of dynamic operationality not in­
cluded in Mitchell, Keller, and Kedar-Cabelli (1986), nor
in DeJong and Mooney (1986) or Mooney and Bennett
(1986), is applying a theorem-prover to decide operational­
ity dynamically. Since explanation is interleaved with gen­
eralization, it becomes easy to prove operationality while
the actual goal is being proved. For example, an axioma-
tization of Keller's (1987) definition of operationality could
be used to determine operationality dynamically, with pred­
icate definitions changing over time as problem solving oc­
curs. The axiomatization could even perforin experimenta­
tion or look-ahead search to determine whether a specific
predicate is operational. Finally, since operationality is
now a problem-solving task, EBG can be applied to it as
well, resulting in better operationality criteria, suited to
the particular task at hand.

Deliberate reasoning about operationality allows the
user to specify rules about operationality rather than rigidly
listing a set of operational predicates. Such application of

logic programming allows operationality to be defined in
terms of proof progress, rather than of the final explanation
structure. Thus operationality can change while doing ex­
planation. For example, if the logic-programming system
provides caching of intermediate results, a rule such as "If a
predicate succeeds n times, make it operational" (for some
n) could be used to specify operationality.

The motivation for making operationality a provable
property is the notion of meta-level reasoning in MRS. In
MRS, proof strategies can be specified in a meta-level the­
ory. Thus, for example, a meta-level rule can specify to try
one branch of a proof over another if it uses an arithmetic
predicate. The vocabulary already exists within MRS to
specify such properties, and hence it becomes easy to spec­
ify operationality rules such as

Arithmetic-Predicate (pred(argi ,.. . ,arg„))
—► Operat ional (pred(arg i , . . . ,argn)) . *

As another example, the rule specifying "If only one po­
tential path is possible at this point, make the current
subtask operational" would use the same meta-level pred­
icates used by meta-level proof strategies in MRS. This
notion of operationality is more robust than operational­
ity as specified by Mitchell, Keller, and Kedar-Cabelli.

This also highlights the difference between the EBG
described here and that of DeJong and Mooney (1986)
and Mooney and Bennett (1986). In their problem-space
framework, they simultaneously generate both the in­
stance's explanation structure and the generalized expla­
nation structure. However, during creation of the general­
ized explanation structure they do not reason about opera­
tionality; only later, during the subsequent generalization
stage, do they determine operationality and modify the
explanation structure.** The generalization stage prunes
the generalized explanation structure using operationality,
and then uses the resulting abridged structure to form the
rule. Thus, although much of the work of generalization
is accomplished during explanation, they still separate ex­
planation and generalization.

One difficulty with ignoring operationality during ex­
planation generation is that situations can arise in which
an explanation is generated from which no operational con­
cept definition can be created, yet other explanations exist
from which operational definitions can be formed. Since in
this work operationality is determined during the explana­
tion process, such situations do not occur. As soon as a
branch terminates without an operational definition, back­
tracking will occur to try to find an alternate proof for the
branch from which an operational concept definition can

*This uses the ability to quantify over predicates in MRS.
**The generalized explanation structure is actually represented as

an overgeneral explanation structure, with a binding list to suffi­
ciently specialize the structure. Since operationality may change the
binding list as well, it must also be modified during generalization.

224 KNOWLEDGE ACQUISITION

be generated. It is impossible to generate a complete ex­
planation structure without simultaneously ending with a
generalized explanation structure that has an operational
definition of the goal concept.

V I S e a r c h C o n t r o l

Mitchell, Keller, and Kedar-Cabelli include an exam­
ple of learning search control for integration operators.
Their domain theory includes the following rules:*

Useful(op,x)^Not(Solved(x))ASolvable(op(x))
Solvable (x)<->

where Regress in the last rule propagates y through op.
The goal concept is Useful(0p3,x)—to learn search con­
trol for 0p3. However, the actual definition for 0p3 is never
given. The hidden definition of Regress is the source of
all resulting knowledge of Op3.

A footnote of Mitchell, Keller, and Kedar-Cabelli
(1986) remarks: "Notice that the regression here involves
propagating constraints on problem states through prob­
lem solving operators. This is a different regression step
from the second step [generalization] of the EBG process,
in which the goal concept is regressed through the domain
theory rules used in the explanation structure." They are
saying that for this task the Regress predicate is necessary
in addition to EBG's own regression, since it is a differ­
ent form of regression. The correct distinction, however,
is not that they are different regressions, but rather that
they are regressing through different knowledge represen­
tations. Rosenbloom and Laird (1986) point out that "the
EBG implementation of search-control acquisition requires
the addition of general interpretive rules to enable search
with the task operators and the regression of the solution
property through them, while Soar makes use of the same
goal/problem-space/chunking approach as is used for the
rest of the processing." Basically, they are saying that
Soar has only one way to represent knowledge, and thus
only has one form of regression possible. Likewise here, the
strict enforcement of a logical representation forces repre­
sentation of all knowledge, including operators, as rules in
logic, with only a single form of regression.

Thus the distinction is not that Soar uses problem
spaces, but rather that Soar consistently uses a single rep­
resentation. Mapping this back to EBG, using a single rep­
resentation scheme to represent all information uniformly
allows use of a single form of regression. Here this means

* Their domain theory has been modified a bit here for greater
clarity.

representing all information about operators, such aE Op3,
explicitly as rules in logic. A domain theory for integration
satisfying this uniform representation constraint* is

Apply(op,problem,newproblem)
ASolvable(newproblem)

—►Useful(op,problem)
Integrat e(problem,answer) —►Solvable(problem)
Any-Fn(problem)-*Integrate(problem,problem)

This database does two things. In addition to making the
definitions of operators (such as 0p3 and 0p9) explicit, it
also makes the notion of state explicit. Rather than hav­
ing functional application of operators within predicates
(such as Solvable), Apply is used as a separate conjunct
to create explicitly the state to which predicates will be
applied.

Given that Op 3 is useful for (i.e.,
Useful as well as proper definitions for
Any-Fn, operationally, etc., the rule learned by EBG, sim­
plified by removing duplicate conjuncts, is

This is equivalent** to the simpler rule

which is similar to the rule of Mitchell, Keller, and Kedar-
Cabelli (1986).*** Note that the matching predicates of
Mitchell, Keller, and Kedar-Cabelli (1986), Matches(x.y),
are done implicitly with unification, and that regression
through operators is done by the same mechanism as re­
gression through rules (since the operators arc rules).

*The domain theory has been simplified somewhat for
presentation.

**A11 other conjuncts of the original antecedent will be true if the
antecedent of this simpler rule is true. Prieditis and Mostow (1987)
discuss how to use partial evaluation to generate such simplifications
automatically.
***The difference, as in Rosenbloom and Laird (1986), is in the rep­

resentation of integration problems and the applicability of operators
to them. The difference is not significant.

Hirsh 225

V I I I m p e r f e c t D o m a i n T h e o r i e s

Mitchell, Keller, and Kedar-Cabelli point out the re­
liance EBG has on the user-provided domain theory and
identify the issue of imperfect domain theories as a topic
for future work. They recognize three sources of imper­
fection in a domain theory: incompleteness, intractability,
and inconsistency. Rosenbloom and Laird (1986) discuss
two further sources, incorrectness and defeasibility of do­
main theories. The precision of a logical view of EBG
greatly clarifies these issues, and suggests solutions to some
of these issues.

As recognized by Mitchell, Keller, and Kedar-Cabelli,
and Rosenbloom and Laird, the existence of a default rule
to compute the weight of an endtable in the Safe-To-Stack
example causes difficulties for application of EBG. Use of
this default rule makes EBG learn an overgeneral rule,
since the learned rule has hidden the fact that it was only
relevant when the second object's weight was otherwise
unprovable. The learned rule will thus allow concluding
Safe-To-Stack for endtables that are not Safe-To-Stack
using the original domain theory. This form of inconsis­
tency raised by Mitchell, Keller, and Kedar-Cabelli is the
same as the defeasibility issue raised by Rosenbloom and
Laird.* In logic they become the issue of nonmonotonicity.

A theory is monotonic if adding new facts will never
invalidate a previously proved fact. If new facts can inval­
idate previous results, the theory is nonmonotonic. Until
now domain theories have been viewed as theories in a for­
mal sense. However, when given to a theorem prover, the
needs of efficiency outweigh the needs of theory, and extra-
logical notions such as rule order and default rules must be
added. These added computation devices cause monotonic
theories to become nonmonotonic.

The Saf e-To-Stack example has such nonmonotonic­
ity. The order of rules in a database specifies what order
the rules will be used in attempting a proof. By ordering
the rules in the correct way, a rule can be made to serve as
a default, to be used if other means of proof (tried earlier
since they occurred earlier in the database) fail. Thus, for
example, the endtable weight rule was placed after the vol­
ume times density weight rule to cause the endtable rule
to serve as a default rule.

The cause of these difficulties is the fact that some
rules conflict—that more than one rule can be used at the
same time for some instances, and that different conclu­
sions can be reached using these different rules. In such
cases conflict resolution is necessary to decide which rule
to select. The example of rule order above is one simple
example of a conflict resolution strategy. The difficulty for
EBG is that this extra information is not an explicit part

*A theory is defeasible if the addition of knowledge can change
results.

of the domain theory, and is thus hidden from the EBG
process, which therefore cannot incorporate this informa­
tion into the learned rule. EBG is only as correct as the
information given to it. Since knowledge of the default sta­
tus of the endtable weight rule is kept hidden from EBG,
it has no way to learn a correct rule.*

This view of the problem suggests a solution. If the
difficulty is that information is hidden, the solution is to
make this information explicit. There are two ways to do
this. The first is to incorporate conflict resolution decisions
into the explanation structure, so that EBG can form rules
from all information used in verifying the instance. The do­
main theory would in effect contains all rules and facts for
conflict resolution, and conflict resolution decisions will be
incorporated into the explanation structure. Thus the ex­
planation structure would include failing branches, which
may be used in one of two ways. EBG could learn a rule
with an added conjunct saying that Weight(v3,v39) is
not provable using the volume-times-density Weight rule.
It might alternatively learn a rule with an added conjunct
corresponding to the specific reason for the failing branch
in the explanation, Unprovable (Volume (v3)).

As discussed below, such addition of conflict reso­
lution decisions into the explanation structure will often
cause EBG to create over-specialized rules. Furthermore,
conflict-resolution strategies such as rule order are often
difficult to encode explicitly for use in the explanation
structure. In these cases a second choice, reformulating
the domain theory, becomes appropriate. The goal of such
reformulation should be to remove all need for conflict res­
olution, namely, to eliminate overlap in conflicting rules.
This can be done using predicates about provability. For
example, the following reformulated domain theory for the
Safe-To-Stack example makes the nonmonotonicity of
the default rule explicit:

(Note that the volume-times-density weight rule now con­
cludes the new predicate Weight 1 rather than Weight.)
Given a database with these rules, EBG will learn the cor­
rect rule:

* Lewis (1987) has discussed a similar concept of the safety of
production-system learning mechanisms. When priority schemes are
used to order productions, the result of composing two productions
may be inconsistent with respect to the original production system.

226 KNOWLEDGE ACQUISITION

Failure to compute the endtable weight has become ex­
plicit in the Unprovable(WeightI(v3,v51)) conjunct of
the new rule.

Finally, note that conflict resolution schemes can be
used to serve two different purposes. In the Safe-To-Stack
example there are two cases of rule conflict. The first is
the two different ways to conclude Safe-To-Stack(x,y):
Unprovable (Fragi le (y)) and Lighter(x,y) . In this case
rule order has no impact on the correctness of the results of
EBG; rule order will only influence the speed with which
the system reaches conclusions. On the other hand, the
rule order of the two Weight rules embodies domain knowl­
edge: the second rule is a default rule, and it is only correct
to try it if the first rule fails. It is only this second use of
conflict resolution, when it embodies domain knowledge,
that can cause EBG to overgeneralize. Thus only some
conflicting rules need be reformulated to remove the con­
flict. Likewise, only some conflict resolution decisions need
be included in the explanation structure. Although in both
cases EBG learns correct rules when all conflicting rules are
addressed, the learned rules will often be over-specialized.*

V I I I C o n c l u s i o n

This paper has described an implementation of
explanation-based generalization (EBG) within a logic-
programming environment, in which generalization is done
in parallel with explanation generation. All aspects of
EBG are viewed in logic, which clarifies issues of EBG.
Operationality becomes a provable property requiring ex­
plicit reasoning. Additionally, logical representation of do­
main operators unifies regression of constraints through
operators with regression of goals through domain rules.
Finally, overgeneralization by EBG is better understood
when viewed from a logic standpoint. Making those in­
consistencies in a domain theory that are due to nonmono-
tonicity explicit, either by incorporating conflict resolution
decisions into the explanation structure, or by making rules
mutually exclusive, removes the cause of overgeneralization
for EBG.

*Soar (Laird, Rosenhloom, and Newell 1987) has solved this by
providing two forms of preferences (Soar's version of conflict resolu
tion). Necessity preferences (Laird, Rosenhloom, and Newell 1986)
are used to specify those preferences that embody knowledge of the
goal test. The backtracing mechanism used in Soar ignores all pref­
erences except necessity preferences, which are incorporated into the
learned chunks.

R e f e r e n c e s

1 DeJong, G.F., and R. Mooney, "Explanation-Based
Learning: An Alternative View". Machine Learning
1:2 (1986) 145-176.

2 Finger, J. J., and M. R. Genesereth, "RESIDUE—
A Deductive Approach to Design Synthesis", Techni­
cal Report KSL-85-1, Knowledge Systems Laboratory,
Computer Science Department, Stanford University,
January, 1985.

3 Keller, R. M., The Role of Contextual Knowledge in
Learning Concepts to Improve Performance. Ph.D.
Thesis, Department of Computer Science, Rutgers Uni­
versity, January, 1987.

4 Laird, J. E., A. Newell, and P. S. Rosenbloom, "Soar:
An Architecture for General Intelligence", Technical
Report KSL-86-70, Knowledge Systems Laboratory,
Computer Science Department, Stanford University,
December, 1986. To appear in Artificial Intelligence.

5 Laird, J. E., P. R. Rosenhloom, and A. Newell, "Over-
generalization During Knowledge Compilation in
Soar". In Proceedings of the Workshop on Knowledge
Compilation, Otter Crest, Oregon, 1986.

6 Lewis, C. "Composition of Productions". In Klahr,
D., Langley, P., and Neches, R. (editors), Production
System Models of Learning and Development. Cam­
bridge, Mass.: MIT Press, 1987.

7 Mitchell, T. M., R. M. Keller, and S. T. Kedar-Cabelli,
"Explanation-Based Generalization: A Unifying
View". Machine Learning 1:1 (1986) 47:80.

8 Mooney, R., and S. Bennett, "A Domain Indepen­
dent Explanation-Based Generalizer". In Proceedings
of the National Conference on Artificial Intelligence.
Philadelphia, PA, August, 1986.

9 Prieditis, A., and J. Mostow, "PROLEARN: Toward a
Prolog Interpreter that Learns". In Proceedings of the
National Conference on Artificial Intelligence. Seat­
tle, Washington, July, 1987.

10 Rosenbloom, P.S., and J.E. Laird, "Mapping
Explanation-Based Generalization onto Soar". In Pro­
ceedings of the National Conference on Artificial In­
telligence. Philadelphia, PA, August, 1986.

11 Russell, S., "The Compleat Guide to MRS". Techni­
cal Report KSL 85-12, Computer Science Department,
Stanford University, June, 1985.

Hirsh 227

