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Abstract 

This paper describes a domain-independent implemen­
tation of explanation-based generalization (EBG) within 
a logic-programming environment. Explanation is inter­
leaved with generalization, so that as the training instance 
is proven to be a positive example of the goal concept, 
the generalization is simultaneously created. All aspects 
of the EBG task are viewed in logic, which provides a 
clear semantics for EBG, and allows its integration into 
the logic-programming system. In this light operationally 
becomes a property requiring explicit reasoning. Addition­
ally, viewing EBG in logic clarifies the relation of learning 
search-control to EBG, and suggests solutions for dealing 
with imperfect domain theories. 

I Introduct ion 

Mitchell, Keller, and Kedar-Cabelli (1986) present a 
unifying framework for an explanation-based approach to 
generalization. Its underlying idea is to form an explana­
tion structure (such as a plan or a proof tree) for a spe­
cific situation, and generalize the explanation structure so 
that it applies to a wider range of situations. Explanation-
based generalization (EBG) uses a logical representation 
for knowledge, and an inferential view of problem solving. 
DeJong and Mooney (1986) suggest a more general term, 
explanation-based learning (EBL), to also cover systems 
that may specialize knowledge using information from an 
explanation structure. They take a problem-space view 
of problem-solving, in which generalization is a method of 
acquiring schemata for problem solving. 

* Discussions with Paul Rosenbloom, Devika Subramanian, Ray 
Mooney, Smadar Kedar-Cabelli, Stuart Russell, Rich Keller, Allen 
Van Gelder, and Michael Genesereth had a significant impact on this 
work. Comments by Paul Rosenbloom, Marianne Winslett, Stuart 
Russell, and Jane Hsu on earlier drafts of this paper were invaluable. 
MRS has been developed by the Logic Group at Stanford University; 
the EBG program was written on top of the existing MRS architec­
ture, and incorporates modified versions of Jeff Finger's RESIDUE 
method (Finger and Genesereth 1985). Computing resources were 
funded in part under NIH grant RR-00785 from the Division of Re­
search Resources Biomedical Research Technology Program. The ar­
rangement of facilities at ISI by Norm Sondheimer and Bob Neches 
for work on this paper is greatly appreciated. 

This paper describes the result of viewing all aspects 
of EBG in the logical formalism of the MRS logic-
programming system (Russell 1985). MRS provides many 
forms of inference, including forward-chaining, backward-
chaining, resolution, and residues (a form of abduction that 
has many similarities to EBG), and allows specification of 
proof strategies in meta-level theories. The underlying rep­
resentation of MRS is logic. A user provides the system 
with a set of rules, and selects a form of inference with 
which facts are to be proved. The discipline of logic pro­
vides a clear semantics for EBG, and allows integration of 
EBG with other logic-inference methods. Under such strict 
formal representation it becomes possible to reason about 
operationality, as well as provide a consistent framework 
for learning search control in EBG. It furthermore clarifies 
the difficulty of imperfect domain theories in EBG, and 
suggests some solutions to this problem. 

I I Framework 

The logical framework of Mitchell, Keller, and Kedar-
Cabelli was taken as the appropriate starting point for this 
work. EBG takes knowledge (rules and facts) about a goal 
concept, an instance of the concept, and operationality 
of predicates. Given a specific instance of a concept (the 
training instance), and knowledge about that concept (the 
domain theory), the task for EBG is to find a definition of 
the concept expressible in terms of operational predicates. 
It does this by using the domain theory to prove that the 
instance is an example of the goal concept, generalizing the 
proof to find an operational description of a larger class of 
instances that are verifiable examples of the goal. 

I l l Example 

This framework for EBG is illustrated using the Safe-
To-Stack example from Mitchell, Keller, and Kedar-Cabelli 
(1986). Given the following facts about two objects, Objl 
and 0bj2, that satisfy Safe-To-Stack(0bjl ,0bj2), 
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•Throughout this paper variables begin with lower-case letters and 
are assumed to be universally quantified. All relations, including <, 
are written in prefix form, and n-ary functions are written as n+l-ary 
relations, with the result as the additional n+lst argument. 

Figure 1: Explanation structure (proof tree) for 
Safe-To-Stack(0bj1,0bj2) 

I V I n t e r l e a v e d E x p l a n a t i o n a n d 

G e n e r a l i z a t i o n 

As just described, the task of EBG is to prove that 
an instance is an example of a concept, and generalize 
the proof to form an operational description of the con­
cept. These two stages, explanation and generalization, 
are typically done sequentially: after creating a proof, a 
generalization step forms the operational description from 
the proof. This work takes a different approach—the two 
stages are done simultaneously. The system attempts to 
prove that the instance is an example of the concept (such 
as Safe-To-Stack(0bjl,0bj2) above) by backward chain­
ing on the goal through rules until training-instance facts 
are reached. However, each time a rule is used, it is simul­
taneously applied backward to the variablized goal concept 
(such as Saf e-To-Stack(v2, v3)), creating the generalized 
explanation structure in parallel with the instantiated ex­
planation structure. 

EBG is started on a specific goal, such as Safe-To-
Stack(0bj l ,0bj2). The first step is to find all rules that 
could potentially conclude this fact, namely all those whose 
consequent unifies with the goal concept. They are 

Not(Fragile(y))->Safe-To-Stack(x,y) 

and 

Lighter(x,y)->Safe-To-Stack(x,y). 

The first is tried (since it occurs earlier in the data-
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0n(0bj1,0bj2) 
Isa(Obj1,Box) 
Isa(0bj2,Endtable) 
Color(Obj1,Red) 
Color(Obj2,Blue) 
Volume(Obj1,1) 
Densi ty(0bj l ,0.1) , 

and rules about the safety of stacking one object on an­
other (with appropriate procedural attachment for " x " 
and "<") , * 

Hot(Fragile(y))->Safe-To-Stack(x,y) 
L ighter(x,y) —>Safe-To-Stack(x,y) 
Volume(pl ,v l )ADensi ty(p l ,d l )Ax(v l ,d l ,wl ) 

-►Weight(pi,wl) 
Isa(pl,Endtable)-+Weight(pl ,5) [Default Rule] 
Weight (p1,w1)AWeight(p2,w2)A<(wl,w2) 

-♦Lighter(p1,p2), 
and facts about the operationally of predicates 

Operational(Volume(p,v)) 
Operational(Density(p,d)) 
Operational(0n(x,y)) 
Operational(Color(p,c)) 
Operational(Isa(x,o)) 
Operational ( x (x, y, z) ) 
Operat ional(<(x,y)) , 

the EBG system should verify that the training instance is 
indeed a correct example of Safe-To-Stack, and general­
ize its verification to form a rule specifying a larger set of 
cases that are Saf e-To-Stack: 

Volume(v2,v37)ADensity(v2,v38) 
Ax(v37,v38,v33) 
AIsa(v3 .Endtable) A< (v33,5) 

->Safe-To-Stack(v2,v3). 

EBG constructs a proof that the example satisfies the 
goal, as in Figure 1. This proof is generalized, result­
ing in the generalized explanation structure for Safe-To-
Stack(v2,v3) shown in Figure 2. The conjunction of the 
operational predicates (Volume, Density, x, Isa, and <) 
in the generalized proof form a condition on the general­
ized goal predicate. Mooney and Bennett (1986) provides 
more detail on three other versions of EBG. Further detail 
on the implementation of EBG for this work follows. 



Safe-To-Stack(v2,v3) 

Lighter(v2,v3) 

Density(v2,v49) X(v48,v49,v42) 

Weight(v2,v35) Weight(v3,v36) <(v35,v36) 

Figure 3: Generalized explanation structure (proof tree) 
for Safe-To-Stack(0bjl,0bj2) when Weight(p,v) is op­
erational 

Figure 2: Generalized explanation structure (proof tree) 
for Safe-To-Stack(0bjl,0bj2) 

base), and generates the subtask Not (Fragile (Obj2)) 
by unifying the consequent of the rule with Safe-
To-Stack(0bjl,0bj2) and applying the binding list thus 
formed to the antecedent of the rule. The antecedent be­
comes the new subtask. The generalized subtask 
Not (Fragile (v2) ) is generated in the same way, by unify­
ing the consequent of the rule with the generalized form of 
the original task, Sale-To-Stack(v2,v3)*, and applying 
the resulting bindings to the antecedent of the rule, re­
sulting in a new generalized subtask. Thus the generalized 
explanation structure is formed in parallel to the formation 
of the instantiated explanation structure. 

Not (Fragile ( Obj2)) fails (for lack of applicable rules), 
so the system backtracks to the earlier goal Safe-To-
Stack(0bj l ,0bj2), and its generalization, Safe-To-
Stack(v2,v3). The second rule is now tried, resulting 
in Lighter ( 0 b j l , 0bj2) and Lighter (v2,v3). The back­
ward-chaining process continues, at each step unifying both 
the current task and its generalization with the conse­
quents of rules and applying the resulting bindings to the 
antecedents to obtain new subtasks. Failure to prove a 
subtask causes backtracking to an earlier subtask for a dif­
ferent rule selection or variable binding. Backtracking also 
occurs if a subtask is proved, but yet the subtask's gen­
eralization is not operational, since EBG must generate 
an operational definition of the concept. Note that back­
tracking removes all record of failed attempts to prove the 
task, and thus erroneous proof paths will affect neither the 
explanation structures, nor EBG's final learned rule. 

•The generalized form of the first goal (Safe-To-Stack(v2,v3) 
here) is created by simply taking the non-unified consequent of the 
rule used to backward chain from the instantiated initial goal. 

The above description of backward-chaining on gener­
alized goals while creating the proof has one exception. If 
a generalized subtask is ever operational, but the instan­
tiated subtask requires further proof, the system merely 
continues normal proof of the subtask alone. This causes 
EBG to find more general operational definitions than it 
might otherwise form. The current generalized subtask be­
comes a terminal node in the developing generalized expla­
nation structure, without inclusion of any of the subtasks 
that occur below it. For example, if Weight is operational 
(i.e., Operational (Weight (p1 ,w1)) is in the database for 
Safe-To-Stack), the resulting generalized explanation 
structure will be that of Figure 3. 

The final step of EBG is to form the conjunction of 
terminal nodes of the generalized explanation structure, 
and create a rule with this conjunction as the antecedent 
and the top goal of the generalized explanation structure 
as its consequent. All bindings formed during creation of 
the generalized explanation structure are applied to this 
rule, to handle interacting subgoals correctly. The result­
ing rule is the final result of EBG. Thus 

Weight (v2,v35)AWeight(v3,v36)A<(v35,v36) 
->Safe-To-Stack(v2,v3) 

would be the rule learned for the preceding example in 
which Weight is operational. 

DeJong and Mooney (1986) point out that there is of­
ten more than one way to prove that an example is indeed 
an instance of a concept, and each such differing proof can 
result in a different rule from EBG. Thus, for example, 
if the training-instance data for Ob j 2 included knowledge 
for concluding Not (Fragile (Obj2)), there would be two 
ways to prove Safe-To-Stack(Objl ,0bj2), and thus two 
rules could be created by EBG, depending on which proof 
was chosen. As discussed in Section VI I , such selection 
is deterministically specified by the order of rules in the 
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domain theory—whichever knowledge came first, fragility 
or weight, would succeed in creating a proof. However, 
logic programming systems often provide a means for find­
ing multiple results due to alternative inferential paths. 
In MRS, if the plural form of an inference method is se­
lected, MRS finds all conclusions that can be found with 
the specified inference method. Since EBG has been imple­
mented as an additional form of inference for MRS, EBGS 
was also implemented, to allow creation of all rules that 
can be formed from all possible proofs of the training in­
stance. Furthermore, meta-level knowledge can be used to 
specify which rule to select at any point, thus determin­
ing which explanation EBG will form, and hence what the 
final learned rule will be. 

V O p e r a t i o n a l i t y 

Operationality criteria are one of the inputs that 
Mitchell, Keller, and Kedar-Cabelli specify for their EBG, 
but the only operational definition they give for it is "The 
concept definition must be expressed in terms of the predi­
cates used to describe examples . . . or other selected, easily 
evaluated, predicates from the domain theory." It is only 
a small extension to allow specification of any set of pred­
icates, such as including Weight in the example above. 
However, DeJong and Mooney (1986) and Mooney and 
Bennett (1986) point out that such simple selection of op­
erational predicates is insufficient, and provide examples 
in which operationality is a function of the proof struc­
ture. In one such example they define operationality to 
be predicates at terminal nodes of the generalized expla­
nation structure after all predicates that only support Isa 
facts are removed. This dynamic operationality cannot be 
supported in EBG as described by Mitchell, Keller, and 
Kedar-Cabelli. 

Another example of dynamic operationality not in­
cluded in Mitchell, Keller, and Kedar-Cabelli (1986), nor 
in DeJong and Mooney (1986) or Mooney and Bennett 
(1986), is applying a theorem-prover to decide operational­
ity dynamically. Since explanation is interleaved with gen­
eralization, it becomes easy to prove operationality while 
the actual goal is being proved. For example, an axioma-
tization of Keller's (1987) definition of operationality could 
be used to determine operationality dynamically, with pred­
icate definitions changing over time as problem solving oc­
curs. The axiomatization could even perforin experimenta­
tion or look-ahead search to determine whether a specific 
predicate is operational. Finally, since operationality is 
now a problem-solving task, EBG can be applied to it as 
well, resulting in better operationality criteria, suited to 
the particular task at hand. 

Deliberate reasoning about operationality allows the 
user to specify rules about operationality rather than rigidly 
listing a set of operational predicates. Such application of 

logic programming allows operationality to be defined in 
terms of proof progress, rather than of the final explanation 
structure. Thus operationality can change while doing ex­
planation. For example, if the logic-programming system 
provides caching of intermediate results, a rule such as "If a 
predicate succeeds n times, make it operational" (for some 
n) could be used to specify operationality. 

The motivation for making operationality a provable 
property is the notion of meta-level reasoning in MRS. In 
MRS, proof strategies can be specified in a meta-level the­
ory. Thus, for example, a meta-level rule can specify to try 
one branch of a proof over another if it uses an arithmetic 
predicate. The vocabulary already exists within MRS to 
specify such properties, and hence it becomes easy to spec­
ify operationality rules such as 

Arithmetic-Predicate (pred(argi ,.. . ,arg„)) 
—► Operat ional (pred(arg i , . . . ,argn ) ) . * 

As another example, the rule specifying "If only one po­
tential path is possible at this point, make the current 
subtask operational" would use the same meta-level pred­
icates used by meta-level proof strategies in MRS. This 
notion of operationality is more robust than operational­
ity as specified by Mitchell, Keller, and Kedar-Cabelli. 

This also highlights the difference between the EBG 
described here and that of DeJong and Mooney (1986) 
and Mooney and Bennett (1986). In their problem-space 
framework, they simultaneously generate both the in­
stance's explanation structure and the generalized expla­
nation structure. However, during creation of the general­
ized explanation structure they do not reason about opera­
tionality; only later, during the subsequent generalization 
stage, do they determine operationality and modify the 
explanation structure.** The generalization stage prunes 
the generalized explanation structure using operationality, 
and then uses the resulting abridged structure to form the 
rule. Thus, although much of the work of generalization 
is accomplished during explanation, they still separate ex­
planation and generalization. 

One difficulty with ignoring operationality during ex­
planation generation is that situations can arise in which 
an explanation is generated from which no operational con­
cept definition can be created, yet other explanations exist 
from which operational definitions can be formed. Since in 
this work operationality is determined during the explana­
tion process, such situations do not occur. As soon as a 
branch terminates without an operational definition, back­
tracking will occur to try to find an alternate proof for the 
branch from which an operational concept definition can 

*This uses the ability to quantify over predicates in MRS. 
**The generalized explanation structure is actually represented as 

an overgeneral explanation structure, with a binding list to suffi­
ciently specialize the structure. Since operationality may change the 
binding list as well, it must also be modified during generalization. 
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be generated. It is impossible to generate a complete ex­
planation structure without simultaneously ending with a 
generalized explanation structure that has an operational 
definition of the goal concept. 

V I S e a r c h C o n t r o l 

Mitchell, Keller, and Kedar-Cabelli include an exam­
ple of learning search control for integration operators. 
Their domain theory includes the following rules:* 

Useful(op,x)^Not(Solved(x))ASolvable(op(x)) 
Solvable (x)<-> 

where Regress in the last rule propagates y through op. 
The goal concept is Useful(0p3,x)—to learn search con­
trol for 0p3. However, the actual definition for 0p3 is never 
given. The hidden definition of Regress is the source of 
all resulting knowledge of Op3. 

A footnote of Mitchell, Keller, and Kedar-Cabelli 
(1986) remarks: "Notice that the regression here involves 
propagating constraints on problem states through prob­
lem solving operators. This is a different regression step 
from the second step [generalization] of the EBG process, 
in which the goal concept is regressed through the domain 
theory rules used in the explanation structure." They are 
saying that for this task the Regress predicate is necessary 
in addition to EBG's own regression, since it is a differ­
ent form of regression. The correct distinction, however, 
is not that they are different regressions, but rather that 
they are regressing through different knowledge represen­
tations. Rosenbloom and Laird (1986) point out that "the 
EBG implementation of search-control acquisition requires 
the addition of general interpretive rules to enable search 
with the task operators and the regression of the solution 
property through them, while Soar makes use of the same 
goal/problem-space/chunking approach as is used for the 
rest of the processing." Basically, they are saying that 
Soar has only one way to represent knowledge, and thus 
only has one form of regression possible. Likewise here, the 
strict enforcement of a logical representation forces repre­
sentation of all knowledge, including operators, as rules in 
logic, with only a single form of regression. 

Thus the distinction is not that Soar uses problem 
spaces, but rather that Soar consistently uses a single rep­
resentation. Mapping this back to EBG, using a single rep­
resentation scheme to represent all information uniformly 
allows use of a single form of regression. Here this means 

* Their domain theory has been modified a bit here for greater 
clarity. 

representing all information about operators, such aE Op3, 
explicitly as rules in logic. A domain theory for integration 
satisfying this uniform representation constraint* is 

Apply(op,problem,newproblem) 
ASolvable(newproblem) 

—►Useful(op,problem) 
Integrat e(problem,answer) —►Solvable(problem) 
Any-Fn(problem)-*Integrate(problem,problem) 

This database does two things. In addition to making the 
definitions of operators (such as 0p3 and 0p9) explicit, it 
also makes the notion of state explicit. Rather than hav­
ing functional application of operators within predicates 
(such as Solvable), Apply is used as a separate conjunct 
to create explicitly the state to which predicates will be 
applied. 

Given that Op 3 is useful for (i.e., 
Useful as well as proper definitions for 
Any-Fn, operationally, etc., the rule learned by EBG, sim­
plified by removing duplicate conjuncts, is 

This is equivalent** to the simpler rule 

which is similar to the rule of Mitchell, Keller, and Kedar-
Cabelli (1986).*** Note that the matching predicates of 
Mitchell, Keller, and Kedar-Cabelli (1986), Matches(x.y), 
are done implicitly with unification, and that regression 
through operators is done by the same mechanism as re­
gression through rules (since the operators arc rules). 

*The domain theory has been simplified somewhat for 
presentation. 

**A11 other conjuncts of the original antecedent will be true if the 
antecedent of this simpler rule is true. Prieditis and Mostow (1987) 
discuss how to use partial evaluation to generate such simplifications 
automatically. 
***The difference, as in Rosenbloom and Laird (1986), is in the rep­

resentation of integration problems and the applicability of operators 
to them. The difference is not significant. 
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V I I I m p e r f e c t D o m a i n T h e o r i e s 

Mitchell, Keller, and Kedar-Cabelli point out the re­
liance EBG has on the user-provided domain theory and 
identify the issue of imperfect domain theories as a topic 
for future work. They recognize three sources of imper­
fection in a domain theory: incompleteness, intractability, 
and inconsistency. Rosenbloom and Laird (1986) discuss 
two further sources, incorrectness and defeasibility of do­
main theories. The precision of a logical view of EBG 
greatly clarifies these issues, and suggests solutions to some 
of these issues. 

As recognized by Mitchell, Keller, and Kedar-Cabelli, 
and Rosenbloom and Laird, the existence of a default rule 
to compute the weight of an endtable in the Safe-To-Stack 
example causes difficulties for application of EBG. Use of 
this default rule makes EBG learn an overgeneral rule, 
since the learned rule has hidden the fact that it was only 
relevant when the second object's weight was otherwise 
unprovable. The learned rule will thus allow concluding 
Safe-To-Stack for endtables that are not Safe-To-Stack 
using the original domain theory. This form of inconsis­
tency raised by Mitchell, Keller, and Kedar-Cabelli is the 
same as the defeasibility issue raised by Rosenbloom and 
Laird.* In logic they become the issue of nonmonotonicity. 

A theory is monotonic if adding new facts will never 
invalidate a previously proved fact. If new facts can inval­
idate previous results, the theory is nonmonotonic. Until 
now domain theories have been viewed as theories in a for­
mal sense. However, when given to a theorem prover, the 
needs of efficiency outweigh the needs of theory, and extra-
logical notions such as rule order and default rules must be 
added. These added computation devices cause monotonic 
theories to become nonmonotonic. 

The Saf e-To-Stack example has such nonmonotonic­
ity. The order of rules in a database specifies what order 
the rules will be used in attempting a proof. By ordering 
the rules in the correct way, a rule can be made to serve as 
a default, to be used if other means of proof (tried earlier 
since they occurred earlier in the database) fail. Thus, for 
example, the endtable weight rule was placed after the vol­
ume times density weight rule to cause the endtable rule 
to serve as a default rule. 

The cause of these difficulties is the fact that some 
rules conflict—that more than one rule can be used at the 
same time for some instances, and that different conclu­
sions can be reached using these different rules. In such 
cases conflict resolution is necessary to decide which rule 
to select. The example of rule order above is one simple 
example of a conflict resolution strategy. The difficulty for 
EBG is that this extra information is not an explicit part 

*A theory is defeasible if the addition of knowledge can change 
results. 

of the domain theory, and is thus hidden from the EBG 
process, which therefore cannot incorporate this informa­
tion into the learned rule. EBG is only as correct as the 
information given to it. Since knowledge of the default sta­
tus of the endtable weight rule is kept hidden from EBG, 
it has no way to learn a correct rule.* 

This view of the problem suggests a solution. If the 
difficulty is that information is hidden, the solution is to 
make this information explicit. There are two ways to do 
this. The first is to incorporate conflict resolution decisions 
into the explanation structure, so that EBG can form rules 
from all information used in verifying the instance. The do­
main theory would in effect contains all rules and facts for 
conflict resolution, and conflict resolution decisions will be 
incorporated into the explanation structure. Thus the ex­
planation structure would include failing branches, which 
may be used in one of two ways. EBG could learn a rule 
with an added conjunct saying that Weight(v3,v39) is 
not provable using the volume-times-density Weight rule. 
It might alternatively learn a rule with an added conjunct 
corresponding to the specific reason for the failing branch 
in the explanation, Unprovable (Volume (v3)). 

As discussed below, such addition of conflict reso­
lution decisions into the explanation structure will often 
cause EBG to create over-specialized rules. Furthermore, 
conflict-resolution strategies such as rule order are often 
difficult to encode explicitly for use in the explanation 
structure. In these cases a second choice, reformulating 
the domain theory, becomes appropriate. The goal of such 
reformulation should be to remove all need for conflict res­
olution, namely, to eliminate overlap in conflicting rules. 
This can be done using predicates about provability. For 
example, the following reformulated domain theory for the 
Safe-To-Stack example makes the nonmonotonicity of 
the default rule explicit: 

(Note that the volume-times-density weight rule now con­
cludes the new predicate Weight 1 rather than Weight.) 
Given a database with these rules, EBG will learn the cor­
rect rule: 

* Lewis (1987) has discussed a similar concept of the safety of 
production-system learning mechanisms. When priority schemes are 
used to order productions, the result of composing two productions 
may be inconsistent with respect to the original production system. 
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Failure to compute the endtable weight has become ex­
plicit in the Unprovable(WeightI(v3,v51)) conjunct of 
the new rule. 

Finally, note that conflict resolution schemes can be 
used to serve two different purposes. In the Safe-To-Stack 
example there are two cases of rule conflict. The first is 
the two different ways to conclude Safe-To-Stack(x,y): 
Unprovable (Fragi le (y)) and Lighter(x,y) . In this case 
rule order has no impact on the correctness of the results of 
EBG; rule order will only influence the speed with which 
the system reaches conclusions. On the other hand, the 
rule order of the two Weight rules embodies domain knowl­
edge: the second rule is a default rule, and it is only correct 
to try it if the first rule fails. It is only this second use of 
conflict resolution, when it embodies domain knowledge, 
that can cause EBG to overgeneralize. Thus only some 
conflicting rules need be reformulated to remove the con­
flict. Likewise, only some conflict resolution decisions need 
be included in the explanation structure. Although in both 
cases EBG learns correct rules when all conflicting rules are 
addressed, the learned rules will often be over-specialized.* 

V I I I C o n c l u s i o n 

This paper has described an implementation of 
explanation-based generalization (EBG) within a logic-
programming environment, in which generalization is done 
in parallel with explanation generation. All aspects of 
EBG are viewed in logic, which clarifies issues of EBG. 
Operationality becomes a provable property requiring ex­
plicit reasoning. Additionally, logical representation of do­
main operators unifies regression of constraints through 
operators with regression of goals through domain rules. 
Finally, overgeneralization by EBG is better understood 
when viewed from a logic standpoint. Making those in­
consistencies in a domain theory that are due to nonmono-
tonicity explicit, either by incorporating conflict resolution 
decisions into the explanation structure, or by making rules 
mutually exclusive, removes the cause of overgeneralization 
for EBG. 

*Soar (Laird, Rosenhloom, and Newell 1987) has solved this by 
providing two forms of preferences (Soar's version of conflict resolu 
tion). Necessity preferences (Laird, Rosenhloom, and Newell 1986) 
are used to specify those preferences that embody knowledge of the 
goal test. The backtracing mechanism used in Soar ignores all pref­
erences except necessity preferences, which are incorporated into the 
learned chunks. 
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