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Abstract—Recently a new performance metric called expe-
rience availability (EA) has been proposed to evaluate online
cloud service in terms of both availability and response time. EA
originates from the fact that from the prospective of quality
of experience (QoE), an online cloud service is regarded as
unavailable not only when it is inaccessible, but also when the
tail latency is high. However, there still lacks analytic models for
evaluating the F'A of online services. In this paper, we propose
an efficient £ A-analytic model using stochastic reward net (SRN)
to study the tail latency performance of online cloud services in
the presence of failure-repair of the resources. Our F A-analytic
model can predict the online service performance on F A, as
well as support analysis on traditional availability and mean
response time. We apply this model to an Apache Solr search
service, and evaluate the prediction accuracy by comparing the
results derived from the model to actual experimental results.
It is shown that the proposed model overestimates the response
time at lower percentiles and underestimates the response time
at higher percentiles. Through attribution analysis, we further
identify the list of factors that may affect the accuracy, and show
that the 95'" percentile latency prediction error can be reduced
to as low as 2.45% by tuning the configurations suggested by the
attribution.

Keywords—cloud computing, experience availability, online
cloud service, stochastic reward net

I. INTRODUCTION

Cloud computing is growing rapidly towards delivering
computing as a public utility. Many services, including online
web systems (e.g., social networking, e-commerce, search
engine) and offline data-processing jobs (e.g., mapreduce,
spark), are continuously deployed or processed in cloud sys-
tems [1, 2]. These services often consist of multiple tiers
and tens or hundreds of tasks or micro-services, and need to
handle unprecedented volumes of data. To characterize the
performance of cloud service, an uptime-based availability
measure was widely used [3], which is defined as

B MTTF

 MTTF + MTTR’
where MTTF and MTTR denote mean time to failure and
mean time to repair, respectively. According to Equ. (1),

availability describes only whether the service is accessible
or not.

A (1
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In fact, from the prospective of quality of experience
(QoE), the tail latency performance is at least as important
as availability for a realtime online cloud service. Google’s
experiences on their back end services show that while ma-
jority of requests take around 50-60 ms, a fraction of requests
takes longer than 100 ms, with the largest difference being
almost 600 times [4]. One major reason of the performance
uncertainty is due to the inevitable underlying competition
on hardware resources among co-located services, resulting
in the serious tail latency problem [5]. According to Nielsen
[6], 0.1 second is about the limit for having the user feel that
the system is reacting instantaneously; a response time of 1.0
second is about the limit for the user’s flow of thought to stay
uninterrupted, even though the user will notice the delay. For
delays longer than 10 seconds, users are prone to perform other
tasks while waiting. In this sense, slow response and service
unavailable would be indistinguishable for cloud users [7].

Recently a new performance measure, named Experience
Availability (EA), which is extended from the definition of
availability, is proposed in [8]. It combines the traditional
availability and tail latency for the first time into a single
metric. According to EA, a service is experience unavailable
not only because the service is failed, but also the " latency
exceeds a pre-defined threshold 7.

Currently, there still lacks analytic models and method-
ologies to analyze the EA of cloud services. According to
its definition, we need to derive both the tail latency and
availability to measure EA. Analyzing availability is relatively
straightforward, and there are already a number of models pro-
posed for availability modeling [9, 10]. However, calculating
tail latency of online cloud services is a significant challenge
due to the multi-tier architecture of cloud services. The er-
rors could propagate across tiers and have cascading effects
on overall latency distribution. Even worse, the majority of
existing work focus on evaluating mean performance metrics,
such as average response time, average resource utilization
[11], while there are only a few of them considering to model
and analyze the distribution of latencies for online services.

In this paper, we propose an efficient analytic model for
analyzing the EA of online cloud services. We consider the
common online search service, and use a stochastic reward
net (SRN) to describe the interactions between its multi-tiers.



Through the model analysis, we can predict the service perfor-
mance on EA. By comparing the prediction results to the real
experimental results, we find that the proposed model shows
some error on tail latency. We then give an attribution analysis
on the system behavior, and find the potential factors that may
affect the accuracy. The contributions can be summarized as
follows:

e We design a SRN model to characterize the request
response process of online cloud services. In this model,
we study the mean response time of online cloud services
in the presence of failure-repair of the resources.

e« We propose a tagged customer model to analyze the
cumulative distribution function (CDF) of response time
for online cloud services. Based on the CDF, we can
derive the EA of online cloud services.

o We demonstrate the accuracy of the model by comparing
the analytical results to the real experimental results. It
shows that the proposed model overestimates the response
time at lower percentiles and underestimates the response
time at higher percentiles. We further conduct experi-
ments to identify a list of factors, including cache, number
of keywords in search space, turbo boost and DVFS
governor, that may affect the accuracy. It is found that by
turning off the cache, increasing the search space, turning
off Turbo Boost and configuring the DVFS performance
governor, the prediction error can be reduced to as low
as 2.45%.

The rest of the paper is organized as follows. Section II
describes the basic architecture of online search service and
our design of the SRN model. We present the E A-analytic
model and introduce the model solving method in section III.
Section IV describes the experimental evaluation of our model
for online search service. In section V, we summarize the
related work. We conclude and discuss future work in section
VL

II. SEARCH SERVICE AND THE SRN MODEL

In this section, we firstly introduce the general architecture
of online search service. Then, we show how to construct the
SRN model for the online search service.

A. Online Service Architecture

An online search service is a software system that is
designed to search for information on the World Wide Web.
Generally it consists of three main components [12]: the web
crawler, the index generator, and the search engine, as shown
in Fig. 1. The web crawler crawls some of the reachable
web pages from site to site. The index generator associates
keywords found on these web pages to their names of sites
containing the keywords. It uses an update handler to process
all updates, and generates distributed indexes. The indexed
information is stored in database, and made available for
search queries. The search engine will accept user’s search
requests, support text analysis, and generate the web pages list
results by searching indexes. During this process, every page

in the entire list must be weighted according to information
in the indexes.

1. User = Load balancer (send requests to load balancer)

2. Load balancer = Search handlers (distribute requests to search engine and
invoke the appropriate search handler)

3. Search handlers = Text analysis pipeline (generate the keywords)

4. Text analysis pipeline = Load balancer (send keywords to load balancer)
5. Load balancer = Database (access database)

6. Database = Response writer (find all web pages containing the keywords)
7. Response writer = User (send results to users)
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Fig. 1. General architecture of the online search service.

Since a user’s perception of the latency is mainly affected by
the search engine, we hereafter merely discuss the modeling
of the request processing in search engine. As shown in Fig.
1, a typical infrastructure for supporting a search component
mainly includes four tiers: search tier, database tier and two
load balancer tiers. We do not take into account the two
load balancer tiers because their processing time is negligible
compared to the search tier and the database tier in our
setup. Depending on the number of users, each tier can be
implemented with multiple instances, which are hosted across
different virtual machines (VMs) in cloud platform. If there
exists more than one instance at a tier, it is required to deploy
another load balance tier to distribute the customer requests
among instances.

Each instance, either the search or the database, maintains
a thread pool for accepting requests. When a search request
arrives, it first waits in the searching queue. The load balancer
reads the search queue, and dispatches the request to a specific
instance of search tier for text analysis. The corresponding
instance then allocates one connection thread from thread pool
to the request, and the connection will be occupied until user
receives search results. After getting the keywords by text
analysis, the request is further forwarded to an instance of
database. Then, the database instance also allocates a thread
to it for searching all web pages containing the keywords.
Then, the response writer in the search instance constructs a
ranked list of web pages, and sends the results back to user.

B. SRN Model

According to the architecture of online search service shown
in Fig. 1, we construct a SRN model to analyze the interac-
tions between multi-tiers. SRN is scalable to model systems
composed of thousands of resources and is flexible to represent
different policies and strategies [13].

We assume that the times assigned to all timed transitions
conforms to an exponential distribution between, following
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the common assumptions in [11, 14]. We consider crash
failures occurs in an instance, i.e., an instance of search or
database could fail with probabilities, resulting in the lost
of all connections running on the instance. If a request’s
connection is lost due to the instance failures, we think that
its response time is infinity. The input parameters required in
the SRN model include: (1) request arrival rate (denoted by
A); (2) queue sizes of search and database (denoted by M,
and Mg,); (3) service rates of a search instance or database
instance (denoted by s and pigp); (4) the maximum number of
connections supported by search tier and database tier (denoted
by N and Ng); (5) failure rates of search and database
(denoted by ¢, and ¢4p); (6) repair rates of search and database
(denoted by d5 and dgp).

P dbdown

Fig. 2. SRN model of the online search service.

TABLE I
GUARD FUNCTIONS OF THE SRN MODEL

Transition Guard Function
gl #Psw < Mg?1:0
g2 #Papw > Mgp? 1: 0
23 H#Papwy < Mgp?1:0

Fig. 2 describes the design of the SRN model for online
search service. We only consider the two main tiers that
directly affect the user’s response time in the model: place
Py, to transition T, represents the processing in the search
tier; place Pgp, to transition Tgp, represents processing in
the database tier. Components such as search handlers are
not studied separately because their processings have been
incorporated into their corresponding tiers. Timed transition
T, represents the request arrivals to the system. Places Pg,,
and Pgp,, represent the waiting queues of the search tier and
database tier, and T, fires only if the queue of search tier is
not yet full (following guard function g1). Once transition T,
(ttrans) fires, a token is deposited in place Pg,, (Pgpyw) showing
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that a request has been submitted to search tier (database tier)
and it is waiting for processing from search tier (database
tier). Place P4 and place P, represent the remaining number
of resources (i.e., connection threads) supported by search and
database tier, and they are initialized with Ng and Ng. If there
is a token in place P, and there is at least one token in place
P, then one token from Pg,, together with another token from
P, is removed respectively, and a token is put in place Pgy,
representing that a request is ready for processing by search
tier. Places P, and Pgp, represent the processing queues of
search tier and database tier. The pound # in the arc from
place P, to the transition T, shows that the actual firing rate
of transition is marking-dependent. Thus, the actual firing rate
of transition T, is calculated as Ky, where K is the number
of tokens in place Pg,. After that, a token is removed from
place P, and deposited into place Pi.qpns, Which represents
that the request has been processed and leaves from search tier.
Transition #;.4,,s represents that the request moves from search
tier to database tier. Transition f, shows that the request gets
dropped from the system and it fires only when the queue of
database tier is already full (following guard function g5). And
then, the request is inserted into the waiting queue of database
(i.e., place Pg,) following guard function g3. At the database
tier, likewise, the request is processed only if database has
available resources. After firing the timed transition Ty, a
token is removed from place Pgp,, while one token deposited
into place Py, and another token deposited into place Pj,
showing that the request is finished and the corresponding
connections at search tier and database tier are both released.
In the SRN model, we also model and analyze the impact
on response time by server failures. We use place Pjq44, and
Pivdown to represent the number of lost connections in search
tier and database tier, respectively. If an search instance fails,
all working connections in P, and idle connections in P,
running on the instance are lost simultaneously. Transition T4
represents the failure occurs in search instances. The zigzag
line on an arc represents that the arc can transfer multiple
tokens at once. Suppose there are I, instances at search tier and
14, instances at database tier. Since the requests are distributed
evenly among the instances, a fraction of 1/I; tokens in place
P, together with another fraction of 1/I, tokens in place P,
are removed respectively, and the sum of these tokens (Vs /1)
is put in place Pgqown, representing that failed connections are
ready for recovering. Once transition T, fires, the number of
tokens (Ng/Is) are removed from Pggon and deposited in
place P, indicating that the lost connections are recovered.
The same process also applies to the database tier, except that
the fraction of 1/I4 tokens are also deposited in place P; after
transition T4 fires. It means that the affected connections at
search tier are also released when a database instance fails.
The guard functions of the SRN model is shown in Tab. L.

C. Mean Response Time under Steady State

Given the SRN model above, we can derive the mean
response time characterizing the system behavior by defining
reward functions. To analyze the mean response time, we



first need to derive the mean number of waiting requests and
blocking probability of requests.

1) Mean number of waiting requests: The mean number of
waiting requests is given by mean number of tokens in place
P, in Fig. 2, and it can be represented by E[#Pg,].

2) Blocking probability of requests: The steady-state block-
ing probabilities of requests in Fig. 2, Py, can be calculated
by assigning the following reward to the SRN model,

N :{ i [#Pau] > M,

0, otherwise.
where M is the maximum length of waiting queue.

3) Mean response time: Mean response time is defined as
the mean time from a customer request is entered the system
until its leave. According to Fig. 2, the mean response time
is the time from the instant that a token is deposited into Py,
until it is removed from Pgp,. Using Little’s law, the mean
response time (denoted by E,) for requests at steady-state can
be calculated as follows,

(E[#Psw] + E[#dew] + E[#Psp] + E[#dep])
(1 — Pb) X A

2)

Et:

©)]
where E[#P,] is the mean number of tokens in place P, at
steady-state and (1 - Pp) X A is the effective request arrival
rate in the online search service system.

III. EXPERIENCE AVAILABILITY MEASURE

In this section, we show how to model and predict the EA
of the online search service. Generally, it takes three steps for
calculating EA: (1) Divide the total operational time 7 into n
time slices. (2) In each time slice, derive the CDF of response
time while taking into account instance failures. (3) Derive
EA based on the CDF of response times in all time slices.

A. Tagged Customer Model

To derive the CDF of response time, we propose the tagged
customer model [15] by modifying the SRN model in order
to track the tagged customers movements through the system.

PCSW rCS“'

P csp

TCEP P ctrans 17 ctrans

Tabd

Lg4]

P capw Tedw Pcdbp Tcdbp Pﬁn

Fig. 3. Tagged customer model.

We show the design of the tagged customer model in Fig. 3.
Place P.s,, contains a single token that represents the arrival
of a request. The m, n, i, j, a, b and p, g tokens initially
presented in places Pgyy, Pavw, Psps Pavp> Psdown> Pdbdown

TABLE 11
GUARD FUNCTION OF THE TAGGED CUSTOMER MODEL IN FIG. 3

Transition Guard Function
gl #Papw > Mgp?1:0
g2 HPapw < Mgp 71:0
g3 #Ps > 0and #Psyy ==021:0
g4 #Pg, >0 and #Pgp, ==0?71:0
g5 #Papw 2 Map 71:0
26 HPipw < Mgy 71:0

and P, Py, represent the corresponding system status before
the request arrival. That is, at the time of the request arrival,
there are m (n) requests waiting in the search (database) queue,
1 (7) requests being processing by search (database), a (b)
connections lost in Psgown (Pibdown)> and p (g) connection
threads in the thread pool still available for accepting new
requests. Transition ., is fired only when place P, is empty
and the place P is not empty. Transition 7.4, is fired only
when place Py, is empty and the place Py, is not empty. The
guard functions are shown in Tab. II.

B. Response Time Distribution Calculation

Now, we can derive the response time CDF using the tagged
customer model. We define the set of initial system states as
follows:

T: [mvnaiajaaub7p7q] (4)
where,
m € [0,..., Mg],n €[0,..., Mg],i € [0,..., Ng],7 € [0, ..., Nas],

a < [0, ...,Ns], be [0, . Ndb],p S [O, ...,Ns], qc [O, . Ndb]7

i+a+p=Ns,j+b+q= Nap.
&)
Denoted by 7, the probability that the system stays in Va €

T under steady state. Then 7, can be derived using the SRN
model proposed in Section II. Clearly, we have,

Z”w =1 (6)

TET

In the tagged customer model, a non-empty place Py;, means
that the processing of the tagged request has been completed.
Thus, we define the absorbing state for the tagged customer
as follows,

i ={

where the reward function r,(¢) is denoted whether an absorb-
ing marking has been reached at time ¢.

By solving the reward function r,(f), we can obtain the
probability R, () that the tagged customer request is absorbed
at time ¢ under initial marking x. Then, the probability that a
request processing is completed at time ¢ can be calculated as

follows:
R(t) =) [Ra(t) x m4] ®)

TET

0, otherwise.

)
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Given the R(t) and the pre-defined ~ and 7, we can easily
know if the 7" percentile latency exceed 7 or not in the
current time slice. Then, it is straightforward to calculate the
EA using Equ. (9),

m;

Z trTHTL, (7,7)
EA(T,7) = =1 > 9
Yo trTHTL () + 2 tPTLTL(r)
i=1 j=1

where {7771, (7,4) represents the time to high tail latency,
that is, the time whose ~*" percentile latency is less or equal
to7: TL(7y) < 7,and trrprr, (7 ) represents the time to low
tail latency, that is, the time with TL(y) > 7.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed SRN model by
comparing its results with the actual experimental results. We
then give an in-depth analysis on the prediction error, and list
the factors that may affect the accuracy of the model.

A. Experiment Setup

We use the Stochastic Petri Net Package (SPNP) [16] to
solve the proposed model. We also implement a real Apache
Solr [17] search service to record and analyze the actual tail
latency experienced by users. All input parameters to the
SRN model are extracted from the testing of the Apache
Solr service. The proposed SRN model does not take into
account the two load balancers because their processing time
is negligible compared to the application and database tiers in
our setup.

For the real Apache Solr service, we deploy three instances
of SolrCloud search engine, which is implemented using
Tomcat for accepting users’ search requests, supporting text
analysis and interacting with database tier. Each instance
of the SolrCloud supports a limited number of connections.
When a request arrives at the server, a separate available
connection thread will be allocated to the request. Likewise,
we also deploy three instances of MySQL database to store
the indexes generated by crawler and indexing component, and
each database instance is configured with a limited maximum
number of connected clients. There may be more than three
instances in real system. Our model can still work by simply
changing the number of instances in the configurations. How-
ever, the runtime of model will increase over the number of
instances, and studying the scalability is left as future work. In
addition, either the SolrCloud instance or the MySQL instance
probably fails following some pre-configured failure rates.
To demonstrate the ability of our model, we artificially set
a relative high failure rate for both SolrCloud and MySQL
instances in the SRN model. We also injected failures into
the real system by powering off instances at the same rate.
If an instance fails, all connections running on it will be lost
simultaneously. The connections will not be recovered until
the instance is repaired.
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Search requests are automatically generated by Apache
Jmeter [18]. It randomly selects a keyword from a pre-
configured search space, and sends requests to Solr following
a Poisson distribution with the arrival rate A. The search space
is initially configured with 3,000 keywords. We totally send 1
million search requests to Solr service. Then Jmeter records
all response times of the requests. We deploy the Apache
Solr service on machines configured with Intel Core 15-4670
processor, and 8GB RAM. To estimate the service rate of both
search threads and database threads, we use Jmeter to access
Solr and Mysql separately, and take the average of ten repeated
operations as the final service rate. Tab. III lists all parameter
configurations used in our model and actual experiments.

TABLE III
CONFIGURATION PARAMETERS

Parameter Values
Max # of connections in search tier (Ns) 9 30 45
Max # of connections in database tier (INgp) 9 30 45
Waiting queue size in search tier (M) 30
Waiting queue size in database tier (M gp) 30
Request arrival rate ()\) 100 [ 400 [ 900
Service rate of a search thread (us) 56
Service rate of a database thread (uqp) 32
Failure rate of a search instance (¢s) 0.100 | 0.125 | 0.330
Failure rate of a database instance (¢qp) 0.100 | 0.125 | 0.330
Repair rate of a search instance (Js) 0.100
Repair rate of a database instance(dqp) 0.100

B. Results

1) Mean Response Time: We first evaluate the mean re-
sponse time of the Solr service using the configuration pa-
rameters listed in Tab. III.

TABLE IV
MEAN RESPONSE TIME

Configurations Mean response time (ms)
Ns | Nap A ¢s Pab Model Experiment|  Error
9 9 400 | 0.125 | 0.125 89.52 74.49 20.18%
30 30 | 400 | 0.125 | 0.125 57.93 49.31 17.48%
45 45 400 | 0.125 | 0.125 40.16 33.97 18.22%
30 30 100 | 0.125 | 0.125 43.29 37.15 16.53%
30 30 900 | 0.125 | 0.125 97.58 82.83 17.81%
30 30 | 400 | 0.330 | 0.330 68.32 57.14 19.57%
30 30 | 400 | 0.100 | 0.100 51.86 43.79 18.43%

Tab. IV shows the SRN model prediction results and the
actual experimental results. Fixing the request arrival rate A at
400 and failure rates ¢, and ¢q; at 0.125, the response times
of both the SRN model and actual experiments decrease as the
number of maximum supported connections increase from 9 to
45. While setting N, = Ng, = 30, the response time increase
significantly as the job arrival rate increase from 100 to 900.



Moreover, the response time decrease if we reduce the failure
rate of both search instance and MySQL instance. We see that
the relative error on mean response time is generally within
20.18%, and the SRN model results on mean response time
are mostly larger than the actual experimental results. This
is primarily because, there are some acceleration techniques
adopted by either the hardware layer or software layer, for
example, CPU pipeline, multiple instruction issue, cache, our
SRN model is unable to analyze these techniques, while they
indeed reduce the response time significantly in the actual
experiments.

2) Response Time CDF: By changing the maximum num-
ber of connections (Ng and Ng), request arrival rate (\), and
failure rate (¢ and ¢4p), respectively, we conduct three groups

1 1
0.8 0.8
w 06 95th [99th w 06 90th | 95th
[a) Model 98 119 |166 Model 195 |238 (332
Qo4 Experiment|54 | 102 |221 Co4 iment|127 | 193 |407
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0 0

0 200 400
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600
(a) A =100 (b) A= 900

Fig. 5. Response time CDF under different request arrival rates.

TABLE V
EXPERIENCE AVAILABILITY

of experiments to evaluate the cumulative distribution function Configurations Results
(CDF) of the response time. 250ms percentile
Ns | Nap| A @s Pab EA A
Model | Experi.
1 1 1 | 9 9 400| 0.125 | 0.125 | 97.3% 96.4% 70% | 96.3%
08 0.8 0‘8" 30 | 30 | 400| 0.125 | 0.125 | 99.5% 98.9% 85% | 96.5%
w 0.6 w06 soth[ostn]ssth] |, () g 90th[95th[99th|
Boa wibel 804 jf Eeiisie] 8. iz el [ 45 [ 45 [ 400] 0.125 | 0.125 | 999% | 99.0% | 95% | 97.0%
02|} S 02 e ] 02 :gigif:mem‘ 30 | 30 | 100| 0.125 | 0.125 | 99.9% | 99.9% | 95% | 96.3%
0 0 0
0 200 400 60( 0 200 400 60( 0 200 400 600 30 30 900 | 0.125 0.125 95.9% 96.3% 80% 96.2%
response time(ms) response time(ms) response time(ms)
30 | 30 | 400| 0.330 | 0.330 | 98.6% 97.4% 75% | 90.7%
(9a) Ns =9, Ngp = (b)3 éVs = 30, Nap Efs) Ns =45, Nay = 30 | 30 | 400| 0.100 | 0.100 | 99.7% | 99.1% | 90% | 97.1%

Fig. 4. Response time CDF when changing the max. number of connections.

The first experiment evaluates the response time CDF under
settings with different maximum number of connections (/N
and Ngp). For the other parameters, we set A = 400, ¢,
¢ap = 0.125. Fig. 4 shows the response time CDF and the
90%", 95" 99" percentile latency, when N, and N, are set to
9, 30 and 45, respectively. We find that increasing the number
of connections would reduce the 90", 95", 99t" percentile
latency in both model analysis and actual experiments. On the
one hand, our model overestimates the response time at lower
percentile due to the lack of consideration on accelerating
technologies such as cache, CPU pipeline, multiple instruction
issue etc. On the other hand, our model underestimates the
response time at higher percentile (99'"). This is because, there
are many processes, from either other instances/applications or
operating system processes, running on the same underlying
hardware simultaneously, yet the hardware does not support
performance isolation between these processes, resulting in
resource contention and disorder. Hence, the higher percentile
latency in actual experimental is usually much larger than
model results.

The second experiment evaluates the response time CDF
under settings with different request arrival rate (\). Fig.
5 shows the response time CDF and the 90%", 95t" 99"
percentile latency, when Ny = Ng = 30 and X is set to
100 and 900, respectively. We see that the 90", 95", 99th
percentile latency all increases as we increase the arrival rate.
Like the first experiment, our model overestimates the response

time at lower percentile, and underestimates the response time
at higher percentile (99*"). The two lines cross at around the
96" percentile.

0.8 0.8
w06 90th[95th[99th w06 95th
Model 157 [190 [267 Model  [122 [149 208
Co4 Experiment| 104 | 155 |335 Co.4 Experiment|68 | 127 |271
0.2 —Mo e_I 0211 —Mode_l
—-Experiment —-Experiment
0 0
0 200 400 600 0 200 400 600

response time(ms)

(b) ¢s = 0.1, ¢gqp = 0.1

response time(ms)

(@) ¢s = 0.33, pqp = 0.33
Fig. 6. Response time CDF under different failure rate.

The third experiment evaluates the response time CDF under
settings with different failure rate (¢ and ¢4p). Fig. 6 shows
the response time CDF and the 90%", 95", 99t" percentile
latency, when ¢ and ¢4 are set to 0.1 and 0.33, respectively.
When failures are injected to search and database instances,
all the affected connections will be lost, and their response
times become infinity. Moreover, since the maximum number
of connections supported by search tier and database tier is
reduced due to the failures, the newly arrived requests more
probably wait in the queue, or even are rejected if the waiting
queue becomes full. Thus, increasing the failure rate would
increase the response time.
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TABLE VI
ERROR ATTRIBUTION FACTORS.

Factor Level 1 Level 2
Cache off on
Number of Keywords 8000 3000
Turbo Boost off on
DVEFES Governor performance | ondemand

3) Experience Availability Calculation: Suppose the user’s
QoE requirement on tail latency is defined as: in each time
slice, the 99" percentile latency should be less than 250ms.
Tab. V shows the percentiles at the response time of 250ms
in different configurations, calculated by solving the SRN
model and actual experiments, respectively. We see that the
percentiles calculated by SRN model is larger than that in
the actual experiment. By dividing the 1 million requests into
20 equal-time-intervals, we calculate a statistical analysis of
the response times for each time slice, and calculate the EA
according to Equ. (9). We find that, even the arrival rates are
the same in all time slices, but the response time we measure
is changing across runs, resulting in different percentiles at
250ms. This is due to the underlying hardware contention
interferences from other processes in the same server. We
also calculate the traditional availability according to Equ.
(1). Clearly, its values are generally much larger than E'A,
implying that a service may be experience-unavailable even
when it is available.

C. Error Attribution

The analysis has shown the possible prediction error by our
model. To reduce the prediction error, we need to identify the
potential factors that may affect the accuracy. In this section,
we list all the factors we suspect to have an impact on the
response time, and evaluate their impact on the response time.

1) Cache: The cache includes CPU cache and page cache.
CPU cache is used by the CPU of a computer to reduce
the average time to access data from the main memory. The
page cache is kept by the operating system to speed-up the
access to the contents of cached pages and improve the overall
performance.

2) Number of keywords in search space: Since Jmeter
randomly selects keywords from the search space in each
request, a small search space could lead to high frequent
repeated requests. A repeated request could be completed by
the cache not only in the service side, but also in the client.

3) Turbo boost: Turbo boost is a feature implemented on
many modern processors, which automatically raises the pro-
cessors’ operating frequency, and thus performance, depending
on the task demand and dynamic power.

4) DVFS Governor: Dynamic voltage and frequency scal-
ing is a power management technique in CPU. It allows the
operating system to dynamically adjust the CPU frequency to
boost performance or save power.

Tab. VI lists all possible configurations of the factors, which
are divided into two levels, where level 1 indicates {cache off,
8000 keywords, turbo boost off, DVFS governor performance},
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Fig. 7. Response time CDF under different configurations in Tab. VL.

and level 2 indicates {cache on, 3000 keywords, turbo boost
on, DVFS governor ondemand}. We conduct another group
of experiments to evaluate the impact of these factors on the
model prediction accuracy as shown in Fig. 7. We find that,
setting all the four factors at level 1 could help to reduce
the prediction error on mean response time, 90" and 95th
percentile latency. In particular, as shown in Tab. VII, the
prediction error on mean response time could be reduced
to as low as 7.12%, the prediction error on 95" percentile
latency could be reduced to 2.45%. Among the four factors,
we find that turning off the cache feature is the most effective
way to reduce the error, the next is increasing the number of
keywords, turbo boost and DVFS governor make little effect
on the results. For the 99'" percentile latency, we see that
the configuration of level 1 actually increase the prediction
error to 43.54%. This is because the interferences coming from
hardware resource contention still exists, and we are not able
to eliminate their impact through simple configurations.

Fig. 8 shows the response time CDF under the settings of
Ny = Ngy, = 9 and Ny = Ny, = 45, respectively, after we
change all the factors into level 1. Compared with the results
in Fig. 4, when Ny = Ny, = 9, the prediction error on mean
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Fig. 8. Response time CDF for different resource number.

response time is reduced to 9.79%, and the 95th percentile
latency is reduced to 3.57 %. When Ny = Ny = 45, the
prediction error on mean response time is reduced to 8.47%,
and the 95" percentile latency is reduced to 7.02%.

V. RELATED WORK
A. Availability Evaluation

There has been a large amount of work on evaluating the
availability of cloud services, which can be categorized into
model based methods and measurement based methods.

In model based methods, three types of widely used models
are combinatorial models, state-space models and hierarchi-
cal models. Combinatorial models include Reliability Block
Diagrams (RBD) and fault tree analysis. RBD are proposed
to model the availability of virtual data centers (VDCs) [19]
and fault tree [20] has been used to evaluate the reliability of
multi-nodes SDDC (software-defined data center). Although it
is easy to implement combinatorial model due to its explicit
presentation, it cannot model large and complicated systems.

State-space models mainly include Markov chain, semi-
Markov processes, stochastic petri net (SPN) or stochastic
reward net (SRN) [21] . Wu et al. [22] presented a stochastic
method based on semi-Markov model to evaluate the avail-
ability of Infrastructure-as-a-Service (IaaS) cloud. Longo et
al. [23] presented an SRN model to analyze the availability
of a large-scale IaaS cloud. State-space models are capable
of modeling large and complicated systems. However, it is
impractical to use a single state space model to model the
whole system due to the state space explosion problem.

Hierarchical models combine the combinatorial models and
state-space models to evaluate the availability of large-scale

systems. Wei et al. [24] constructs a hybird dependability
model based on RBD and GSPN to model the virtual data
center of cloud computing. Dantas et al. [25] combined RBDs
and Markov models to analyze availability of Eucalyptus
architecture. Because hierarchical model is decomposable, it
solves the problem of state space explosion. However, the
decomposability is not always manually controllable due to
the automaticity of the model generation.

Besides the model based methods, there are a lot of mea-
surement based methods to evaluate the availability. Fujita et
al. [26] developed DS-Bench toolset to evaluate the depend-
ability of a cluster of physical machines and a cloud computing
environment. Sangroya et al. [27, 28] proposed a MapReduce
benchmark suite to estimate the dependability and perfor-
mance of MapReduce systems. Furthermore, there are also a
number of prior works review the performance benchmarking
for TaaS cloud [29, 30]. However, standard benchmarking
solutions cannot be used directly for the prediction of cloud
availability.

B. Tail Latency Evaluation

Tail latency, or response time, is another important metric
reflecting the quality of user experience for online cloud
services. Most existing work focus on evaluating the mean
response time instead of the response time CDF [31, 32].
However, mean response time is far from sufficient to describe
the user experience.

Generally, the response time consists of queuing time and
service time. To evaluate waiting time, Sakuma et al. [33], con-
struct a M/M/s queue model to analyze the tail approximation
of the waiting time distribution of both patient and impatient
customers. Bruneo et al. [13] also propose a tagged customer
model based on SRN to calculate the waiting time distribution.
The waiting time CDF is calculated by the probability that
a tagged customer’s request is absorbed and the probability
of its corresponding initial state. However, the two above
methods only calculate the waiting time CDF instead of the
total response time CDF.

Muppala et al. [15] propose a tagged customer methods
based on SRN to evaluate the response time CDF. Their model
can apply to the closed queuing system with a fixed number of
customers. However, most online cloud services are built on
an open architecture and it can response to an arbitrary number
of customer requests at the actual arrival rate. Grottke et al.
[34] analyze the response time CDF using an open queuing
network model. However, it is not easy to construct and solve
the model due to the state space explosion problem.

VI. CONCLUSION

In this paper, we design an effective tagged customer model
based on SRN to study the tail latency performance of online
cloud services in the presence of failure-repair of the resources.
In our method, the tagged customer model was used to analyze
the CDF of online cloud service and predict the tail latency
at any percentile. By solving the tagged customer model,
we also can calculate the EA of online cloud services. We
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conduct experiments by changing environment settings and
compare model results to real experimental results to verify
the accuracy of the proposed model. Experimental results show
that the model results generally overestimates the response
time at lower percentiles and underestimates the response time
at higher percentiles. We also identified the potential factors
that may impact the accuracy of online cloud services. It was
found that by turning off the cache, increasing the search
space, turning off Turbo Boost and configuring the DVES
performance governor, the prediction error can be reduced to
as low as 2.45%. Taking these potential factor into account
and modify our model accordingly may further reduce the
prediction error, this is left as a future study.

In order to simulate the real utilization of the system whose
request rate may vary significantly over time, we will further
improve our model by adopting a Markov Modulated Poisson
Process (MMPP) in the future.
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