skip to main content
research-article
Free access

Event Recognition Challenges and Techniques: Guest Editors' Introduction

Published: 07 August 2014 Publication History
First page of PDF

References

[1]
J. Allen. 1983. Maintaining knowledge about temporal intervals. Comm. ACM 26, 11 (1983), 832--843.
[2]
M. R. Álvarez, P. Félix, P. Cariñena, and A. Otero. 2010. A data mining algorithm for inducing temporal constraint networks. In Proceedings of the International Conference on Information Processing and Management of Uncertainty (IPMU). 300--309.
[3]
A. Artikis, C. Baber, P. Bizarro, C. C. de Wit, O. Etzion, F. Fournier, P. Goulart, A. Howes, J. Lygeros, G. Paliouras, A. Schuster, and I. Sharfman. 2014a. Scalable proactive event-driven decision-making. IEEE Technology and Society Mag.
[4]
A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski, C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek, A. Gal, S. Mannor, D. Gunopulos, and D. Kinane. 2014b. Heterogeneous stream processing and crowdsourcing for urban traffic management. In Proceedings of the International Conference on Extending Database Technology (EDBT). 712--723.
[5]
D. Athakravi, D. Corapi, K. Broda, and A. Russo. 2013. Learning through hypothesis refinement using answer set programming. In Proceedings of the International Conference of Inductive Logic Programming (ILP).
[6]
J. Bacon, A. I. Bejan, A. R. Beresford, D. Evans, R. J. Gibbens, and K. Moody. 2011. Using real-time road traffic data to evaluate congestion. In Dependable and Historic Computing, 93--117.
[7]
C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul. 2013. RIP: run-based intra-query parallelism for scalable complex event processing. In Proceedings of the International Conference on Distributed Event-Based Systems (DEBS). 3--14.
[8]
W. Brendel, A. Fern, and S. Todorovic. 2011. Probabilistic event logic for interval-based event recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3329--3336.
[9]
L. Brenna, A. J. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald, M. Thatte, and W. M. White. 2007. Cayuga: a high-performance event processing engine. In Proceedings of the ACM SIGMOD Conference. 1100--1102.
[10]
L. Brenna, J. Gehrke, M. Hong, and D. Johansen. 2009. Distributed event stream processing with non-deterministic finite automata. In Proceedings of the International and Conference on Distributed Event-Based Systems (DEBS).
[11]
B. Burton, Y. Genovese, N. Rayner, R. Casonato, M. Smith, M. A. Beyer, T. Austin, B. Gassman, and D. Sommer. 2010. Pattern-based strategy technologies and business practices gain momentum. Gartner Report G00208030.
[12]
T. Calders, N. Dexters, J. J. M. Gillis, and B. Goethals. 2014. Mining frequent itemsets in a stream. Inf. Syst. 39, 233--255.
[13]
L. Callens, G. Carrault, M.-O. Cordier, É. Fromont, F. Portet, and R. Quiniou. 2008. Intelligent adaptive monitoring for cardiac surveillance. In Proceedings of the European Conference on Artificial Intelligence (ECAI). 653--657.
[14]
H. Chaudet. 2006. Extending the event calculus for tracking epidemic spread. Art. Intell. Medicine 38, 2.
[15]
D. Corapi, A. Russo, and E. Lupu. 2011. Inductive logic programming in answer set programming. In Proceedings of the International Conference on Inductive Logic Programming (ILP). 91--97.
[16]
G. Cugola and A. Margara. 2012. Processing flows of information: From data stream to complex event processing. ACM Comput. Surv. 44, 3, 15.
[17]
M. Denecker and A. Kakas. 2002. Abduction in logic programming. In Computational Logic: Logic Programming and Beyond, A. Kakas and F. Sadri, Eds., Lecture Notes in Computer Science, vol. 2407, Springer, 99--134.
[18]
N. Dindar, P. M. Fischer, and N. Tatbul. 2011. DejaVu: a complex event processing system for pattern matching over live and historical data streams. In Proceedings of the Distributed Event-Based Systems (DEBS). 399--400.
[19]
P. Domingos and D. Lowd. 2009. Markov Logic: An Interface Layer for Artificial Intelligence. Morgan & Claypool Publishers.
[20]
C. Dousson and P. L. Maigat. 2007. Chronicle recognition improvement using temporal focusing and hierarchisation. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 324--329.
[21]
Y. Engel and O. Etzion. 2011. Towards proactive event-driven computing. In Proceedings of the Distributed Event-Based Systems (DEBS). 125--136.
[22]
Y. Engel, O. Etzion, and Z. Feldman. 2012. A basic model for proactive event-driven computing. In Proceedings of the Distributed Event-Based Systems (DEBS). 107--118.
[23]
Z. Feldman, F. Fournier, R. Franklin, and A. Metzger. 2013. Proactive event processing in action: a case study on the proactive management of transport processes (industry article). In Proceedings of the Distributed Event-Based Systems (DEBS). 97--106.
[24]
A. Gal, S. Wasserkrug, and O. Etzion. 2011. Event Processing over uncertain data. In Reasoning in Event-Based Distributed Systems, S. Helmer, A. Poulovassilis, and F. Xhafa, Eds., Springer, 279--304.
[25]
N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, and A. Schuster. 2014. Distributed geometric query monitoring using prediction models. ACM Trans. Database Syst.
[26]
M. Hirzel. 2012. Partition and compose: parallel complex event processing. In Proceedings of the Distributed Event-Based Systems (DEBS). 191--200.
[27]
S. Hongeng and R. Nevatia. 2003. Large-scale event detection using semi-hidden markov models. In Proceedings of the International Conference on Computer Vision (ICCV). 1455--1462.
[28]
A. Kembhavi, T. Yeh, and L. S. Davis. 2010. Why did the person cross the road (there)? scene understanding using probabilistic logic models and common sense reasoning. In Proceedings of the European Conference on Computer Vision (ECCV). 2, 693--706.
[29]
D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman, and A. Deligiannakis. 2014. Geometric monitoring of heterogeneous streams. IEEE Trans. Knowl. Data Eng.
[30]
R. Kowalski and M. Sergot. 1986. A Logic-based calculus of events. New Generation Comput. 4, 1, 67--96.
[31]
G. T. Lakshmanan, Y. G. Rabinovich, and O. Etzion. 2009. A stratified approach for supporting high throughput event processing applications. In Proceedings of the Distributed Event-Based Systems (DEBS), A. S. Gokhale and D. C. Schmidt, Eds., ACM.
[32]
D. Lee and W. Lee. 2005. Finding maximal frequent itemsets over online data streams adaptively. In Proceedings of the International Conference on Data Mining (ICDM). IEEE Computer Society, 266--273.
[33]
J. Lijffijt, P. Papapetrou, and K. Puolamäki. 2012. Size matters: Finding the most informative set of window lengths. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD). 2, 451--466.
[34]
D. Luckham. 2002. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley.
[35]
D. Maier, M. Grossniklaus, S. Moorthy, and K. Tufte. 2012. Capturing episodes: may the frame be with you. In Proceedings of the Distributed Event-Based Systems (DEBS). 1--11.
[36]
J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. 2011. Big data: The next frontier for innovation, competition, and productivity.
[37]
V. I. Morariu and L. S. Davis. 2011. Multi-agent event recognition in structured scenarios. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3289--3296.
[38]
S. Muggleton and L. D. Raedt. 1994. Inductive Logic Programming: Theory and Methods. J. Logic Program. 19/20, 629--679.
[39]
P. Natarajan and R. Nevatia. 2007. Hierarchical multi-channel hidden semi markov models. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2562--2567.
[40]
O. Papapetrou, M. N. Garofalakis, and A. Deligiannakis. 2012. Sketch-based querying of distributed sliding-window data streams. Proc. VLDB Endow. 5, 10, 992--1003.
[41]
K. Patroumpas. 2013. Multi-scale window specification over streaming trajectories. J. Spatial Info. Science 7, 1, 45--75.
[42]
O. Ray. 2009. Nonmonotonic abductive inductive learning. J. Appl. Logic 7, 3, 329--340.
[43]
A. Sadilek and H. A. Kautz. 2012. Location-based reasoning about complex multi-agent behavior. J. Artif. Intell. Res. 43 (2012), 87--133.
[44]
N. Poul Schultz-Møller, M. Migliavacca, and P. R. Pietzuch. 2009. Distributed complex event processing with query rewriting. In Proceedings of the Distributed Event-Based Systems (DEBS).
[45]
I. Sharfman, A. Schuster, and D. Keren. 2006. A geometric approach to monitoring threshold functions over distributed data streams. In Proceedings of the ACM SIGMOD Conference. 301--312.
[46]
A. Skarlatidis, G. Paliouras, A. Artikis, and G. Vouros. 2014. Probabilistic event calculus for event recognition. ACM Trans. Computat. Logic. (Preprint available from http://arxiv.org/abs/1207.3270.)
[47]
A. Vautier, M.-O. Cordier, and R. Quiniou. 2007. Towards data mining without information on knowledge structure. In Proceedings of the Principles and Practice of Knowledge Discovery in Databases (PKDD). 300--311.
[48]
U. Vespier, S. Nijssen, and A. J. Knobbe. 2013. Mining characteristic multi-scale motifs in sensor-based time series. In Proceedings of the Conference on Knowledge Management (CIKM). 2393--2398.
[49]
D. Vesset, M. Flemming, and M. Shirer. 2011. Worldwide decision management software 2010--2014 forecast: A fast-growing opportunity to drive the intelligent economy. IDC report 226244.
[50]
J. Wang and P. Domingos. 2008. Hybrid markov logic networks. In Proceedings of the AAAI Conference (AAAI). 1106--1111.
[51]
S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. 2012. Efficient processing of uncertain events in rule-based systems. IEEE Trans. Knowl. Data Eng. 24, 1, 45--58.
[52]
J. Xu Yu, Z. Chong, H. Lu, and A. Zhou. 2004. False positive or false negative: Mining frequent itemsets from high speed transactional data streams. In Proceedings of the International Conference on Very Large Databases (VLDB), Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, Eds., Morgan Kaufmann, 204--215.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Internet Technology
ACM Transactions on Internet Technology  Volume 14, Issue 1
Special Issue on Event Recognition
July 2014
161 pages
ISSN:1533-5399
EISSN:1557-6051
DOI:10.1145/2659232
  • Editor:
  • Munindar P. Singh
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 August 2014
Published in TOIT Volume 14, Issue 1

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)135
  • Downloads (Last 6 weeks)59
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media