
EVENT EXTRACTION FROM BIOMEDICAL PAPERS
USING A FULL PARSER

Akane Yakushiji, Yuka Tateisi, Yusuke Miyao
Department of Information Science, Graduate School of Science,

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

Jun-ichi Tsujii
Department of Information Science, Graduate School of Science,

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
CCL, UMIST, P.O.Box 88, Manchester, M60 1QD, England

We have designed and implemented an information extraction system using a full
parser to investigate the plausibility of full analysis of text using general-purpose
parser and grammar applied to biomedical domain. We partially solved the prob-
lems of full parsing of inefficiency, ambiguity, and low coverage by introducing
the preprocessors, and proposed the use of modules that handles partial results of
parsing for further improvement. Our approach makes it possible to modularize
the system, so that the IE system as a whole becomes easy to be tuned to spe-
cific domains, and easy to be maintained and improved by incorporating various
techniques of disambiguation, speed up, etc. In preliminary experiment, from 133
argument structures that should be extracted from 97 sentences, we obtained 23%
uniquely and 24% with ambiguity. And 20% are extractable from not complete
but partial results of full parsing.

1 Introduction

With the explosion of results in molecular-biology, there is an increasing need
for automatic information extraction (IE) to support database building and
to intelligently find novel knowledge in online journal collections. Extraction
of substance names and other terms 1,2,3,4,5 has gained certain success, and
now the focus of attention is shifting to extracting of interactions and the
relationship between substances6,7,8,9,10.

Many of the previous researchers extracted information on reactions by
matching the sentences in the paper with hand-tailored patterns in regular
expressions on some pre-defined set of verbs representing a certain type of
reaction. However, as a fact can be represented in various forms in natural
language text, many patterns of surface expressions need to be prepared for
one event. Thus, although pattern-matching based information extraction can
be effective and quick on limited types of events in a limited domain, the
workload of preparing patterns for extraction would be too expensive if we
expand our attentions to texts from other domains or to a wider scope of
events.

Pacific Symposium on Biocomputing 6:408-419 (2001)

We propose an alternative information extraction method based on full
parsing with a large-scale, general-purpose grammar. In our system, a parser
converts the variety of sentences that describe the same event into a canonical
structure (argument structure) regarding the verb representing the event and
its arguments such as (semantic) subject and object. Information extraction
itself is done using pattern matching on the canonical structure. Since the
variation of representation is absorbed by the parser, a relatively small number
of patterns are required for extracting an event. Thus, our system can be
applied to new domains more easily than the previous systems.

In this work, we implemented Argument Structure Extractor and did pre-
liminary experiments. For 133 argument structures that should be extracted
from 97 sentences, we obtained 23% uniquely and 24% with ambiguity. A fur-
ther 20% are extractable from not complete but partial results of full parsing.

2 Problems in Information Extraction from Biomedical Papers

In biomedical papers, compared to the targets of traditional information ex-
traction such as newspaper articles, the structure of a sentence tends to be
more complicated. In this section, we address some characteristics of research
papers in the biomedical domain that might be the cause of the problems in
information extraction.

2.1 Variation of verbal forms

Reactions and relationships are represented in the form of phrases where verbs
represent the reaction or relationship and the subject, object and other argu-
ments of the verbs represent the substance, sources and other factors of the
reaction or relationship. The relationship is not always represented in a simple
subject–verb–object order. The verbal phrase may undergo various transfor-
mations such as passivization and nominalization. For example, the event that
a protein P1 activates P2 may be represented in various forms, for example,
“P1 activates P2” (simple indicative form), “P2 is activated by P1” (passive
form), “P1 activating P2” (gerundive form), “activation of P2 by P1” (nomi-
nalized form), and “P2 activation by P1” (nominalized form). Thus, if event
information is extracted directly from surface linguistic expression as in tra-
ditional methods, the number of mapping rules from linguistic expressions to
events becomes huge in practice.

In addition, the structure of a sentence expresses a sequence of events and
other relationships between events. For example, the sentence

An active phorbol ester must therefore, presumably by activation

Pacific Symposium on Biocomputing 6:408-419 (2001)

of protein kinase C, cause dissociation of a cytoplasmic complex of
NF- kappa B and I kappa B by modifying I kappa B.

represents a sequence of three biological reactions i.e.,

1. an active phorbol ester activates protein kinase C

2. the active phorbol ester modifies I kappa B

3. the active phorbol ester dissociates a cytoplasmic complex of NF-kappa
B and I kappa B.

Such a representation of a sequence of reactions is not easy to find by pattern-
matching based methods, because an individual reaction is extracted indepen-
dently using the patterns on the verb that represents the reaction. In the
above example, the individual event of activation, modification, and dissocia-
tion can be extracted using the patterns for verbs “activate”, “modify”, and
“dissociate”, respectively, but the relation of the events, which can only be ex-
tracted by looking at the structure of the whole sentence, cannot be extracted.
Moreover, since the activation event and the modifying event are expressed
using a by-phrase and there is no explicit subject, the activator and modi-
fier (both “active phorbol ester”) cannot be easily determined by traditional
pattern-based methods.

2.2 Embedding

Another problem is that the representation of reactions and relationships is
often embedded in another sentence representing the authors’ view of the event.
For example, in

In this report we show that lipopolysaccharide (LPS)-induced ac-
tivation of B or pre-B cells results in loss of I kappa B alpha from
NF-kappa B complexes in vivo.

the authors conclude with the fact that is represented in the that-clause in the
sentence, but in

Surprisingly, even p65, but not c-rel, was phosphorylated after in-
duction in vivo, suggesting that TNF-alpha selectively activates
only specific NF-kappa B heteromers and that modifications regu-
late not only I kappa B molecules but also NF-kappa B molecules.

the activation described in the that-clause is rather tentative observation in-
duced by the fact of phosphorylation. Another example may be

Pacific Symposium on Biocomputing 6:408-419 (2001)

We have shown previously that both octamer binding transcription
factors, namely the ubiquitous Oct-1 and the B cell-specific Oct-
2A protein, can be enhanced in transcriptional activity by their
association with the B cell-specific coactivator protein Bob1, also
called OBF-1 or OCA-B.

where the fact represented by the that-clause is an old information already
published elsewhere, and thus should not be extracted from the current paper.

Such information cannot be extracted just by looking at the verbs repre-
senting the biological reactions so that pattern matching on such verbs fails to
capture the information carried by the verbs in main clause such as show and
suggest.

3 Use of a Full Parser for Information Extraction

We try to overcome these problems by using a full parser that analyzes the
whole structure of sentences. We first convert the surface form of sentences to
an intermediate canonical form called an argument structure using a general-
purpose, domain independent parser. Event information is then extracted by
domain-specific mapping rules from argument structures to frame representa-
tions. The workload of defining mapping rules can be significantly reduced
since the surface variation is absorbed in the few argument structures. Using
a general-purpose grammar for syntactic analysis makes it possible to modu-
larize the system, so that the IE system as a whole becomes easy to be tuned
to specific domains, and easy to be maintained and improved.

The use of a parser also enables the IE system to find the dependency
between all the phrases in the sentence. We can extract the sequence of other
relationships between events expressed in one sentence, or the authors’ view
represented by embedding, in a more straightforward way.

However, A full parsing approach has not been used in practical applica-
tions on the basis of the following three reasons. First, full parsers in general
tend to be slower, and need a large memory than shallow analysis such as
pattern matching because they handle the full possible structure of whole sen-
tences even when the full structure is not necessary. Second, it is often argued
that the results of full parsers have more ambiguity than that of pattern match-
ers because full parsers produce the full structure of a sentence whereas pattern
matching methods produces a partial structure by ignoring the part of the sen-
tences that do not match the pattern. Third, full parsers have lower coverage
than shallower analyzes because of the complexity of process.

In the current work, we introduce two preprocessors that resolves the local
ambiguities in sentences to improve the efficiency. One of the preprocessor is

Pacific Symposium on Biocomputing 6:408-419 (2001)

a term recognizer4,5 that glues the words in a noun phrase into one chunk so
that the parser can handle them as if it is one word. The other is a shallow
parser that reduces the lexical ambiguity.

A term recognizer identifies technical terms and classify them into semantic
classes such as protein names and source names. The internal structure in the
phrase can be ignored, and unnecessary processing can be avoided. The effect
of reducing this kind of unnecessary analysis is more significant in technical
papers in biomedical domain, because there are long and complex names such
as ‘B-cell specific transcription factor’ and ‘signal transducer and activator of
transcription (STAT) protein’. The term recognizer also solves the coverage
problem caused by technical terms that are not properly recognized due to the
lack of entries in the lexicon of a general–purpose parsers. A virtual lexical
entry can be added in the dictionary corresponding to each class of terms
produced by the recognizer. Then, the parser can use those lexical entries to
interpret the terms.

A shallow parser reduces the lexical ambiguity by using local constraints
to discard more unlikely part of speech and try to make dependency structure
that can be constructed locally. Using this information, we can restrict the
lexical entries used by the full parser to those within the local constraints
by the shallow parser. This is similar to using a part–of–speech tagger, but
a shallow parser can reduce lexical ambiguity more effectively by imposing
stronger constraints.

The remaining problems can be solved by introducing postprocessor that
handles the result of the parser. For ambiguity resolution, disambiguation
heuristics such as taking the longest match can be also applied to the results
of full parsing, but more general disambiguation methods, such as a statistical
disambiguation method 11, can also be incorporated. We can also introduce
a postprocessor that extracts information from the partial results of (failed)
parsing to improve the coverage.

4 Implementation

Figure 1 shows the design of an IE system using a full parser. The surface
form of sentences are converted to an intermediate canonical form called an
argument structure by the parser and then frame structures for the events are
constructed from the argument structure. The user of the IE system, usually
a domain specialist, provides domain-specific knowledge as set of the target
verbs and mapping rules from the argument structures of the verbs to the frame
structures of events as shown in Figure 2. The argument structure, shown in
the left hand side of Figure 2, consists of attributes REL, ARGS, and ADJ,

Pacific Symposium on Biocomputing 6:408-419 (2001)

ACTOR: “Alcohol ingestion“
ACTEE: “glucocorticoid secretion”
CONDITION: “in animals”

Argument structure extractor

Frame extractor

Text

Argument structures

User-defined frame representation

List of target verbs

Definitions of frames representation
and mapping rules

REL: “stimulate”

ARGS:
Subj: “Alcohol ingestion“
Comps: “glucocorticoid secretion”

FRAME: “activate”

SLOTS:

“Alcohol ingestion stimulates glucocorticoid secretion in animals”

ADJ:�“in animals”�

Figure 1: Overview of our system

and their values: The value of REL is the verb in base form; ARGS consists
of SUBJ (subject) and COMPS (complement) subfeatures; The value of ADJ
consists of the adjuncts, markers and other modifiers. The frame structure on
the right hand side of Figure 2 represents of the frame of the event. Given this
knowledge, the system outputs extracted information in user defined frame
representation from natural language texts.

The system consists of Argument Structure Extractor and Frame Extrac-
tor. Argument Structure Extractor applies full parsing to input texts and
extracts argument structures. First, a term recognizer and a shallow parser
preprocess the texts to decrease the workload of a full parser. Then the full
parser analyzes the syntax of the whole sentences and gains argument struc-
tures. Frame Extractor constructs user-defined frame representations from the
argument structures, according to the mapping rule (Figure 2). In the map-

Pacific Symposium on Biocomputing 6:408-419 (2001)

Target Verbs:

“bind”, “make (complex with)”

Mapping Rules:
 REL : “bind”

ARGS :

[
SUBJ : [1]
COMPS : [2]

] 
 →


 FRAME : “bind”

SLOTS :

[
BINDER : [1]
BINDEE : [2]

] 





REL : “make”

ARGS :

[
SUBJ : [1]
COMPS : “complex”

]

ADJ : “with [2]”


 →


 FRAME : “bind”

SLOTS :

[
BINDER : [1]
BINDEE : [2]

] 


Figure 2: Users’ input of target verbs and mapping rules based on domain-specific knowledge

ping rules, users can specify synonyms (lexical variationa) to output in the
same frame form For example, according to the knowledge in Figure 2, argu-
ment structures of “make complex with ” and “interact” are abstracted in the
same frame form.

We implemented a preliminary system of Argument Structure Extractor
and applied it to abstracts on MEDLINE database. An HPSG-based parsing
system XHPSG 12 is used as a full parser. The XHPSG grammar is for general-
purpose natural language processing but we did not tune the grammar or the
lexicon for biomedical domain. As a shallow parser, we adopt ENGCG 13

because it retains the ambiguity in the output if it cannot resolve the ambiguity
by local constraints.

The term recognizer and the postprocessor module for using of partial
parsing results and applying general disambiguation technique are not imple-
mented yet. In the following experiments, we use a corpus which is annotated
with named-entities by biologists14 to simulate the effect of the term recognizer,
and use a simple heuristics of taking the results with the shortest arguments
and the ones with the longest arguments. All modules are implemented in Perl
and a feature structure manipulation language LiLFeS15. The experiments are
performed on Pentium III Xeon 550MHz with 4GB of memory.

5 Experimental Results and Discussions

First, we estimated the effect of preprocessors (ENGCG and manual annotation
of named-entities). We parsed 179 sentences from the annotated corpus from

aLexical variation sometimes involves variation of argument structures. e.g. “bind X”
and “make complex with X”

Pacific Symposium on Biocomputing 6:408-419 (2001)

Table 1: Result of extraction of argument structures

of arg. structures

(1) extracted uniquely 31
(2) extracted with ambiguity 32
(3) not extracted 70
total 133

”<PROTEIN 10> incorporation into cells was also observed when the cells were
incubated with <PROTEIN 2> or with <PROTEIN 3>.


REL : “observe”

ARGS :
[

Comps : “<PROTEIN 10> incorporation into cells”
]

ADJ : “also”, “when the cells were incubated”,
“with <PROTEIN 2> or with <PROTEIN 3>”




[
REL : “incubate”

ARGS :
[

Comps : “the cells”
]]

Figure 3: Example of input sentence and output argument structures

MEDLINE abstractsb with XHPSG parser with and without the preprocessors.
Both parsers output the correct results (parse trees) for 66 sentences. For these
sentences, the number of generated constituents (roughly showing memory
usage) was reduced from 2597 to 786 and parsing time from 19.5 seconds to 2.7
seconds. For the parsing speed, we can expect more efficiency by introducing
faster algorithms for parsing HPSG. For example, TNT parser16, which is a
high-speed HPSG parser with filtering techniques, achieves 50 times faster
parsing speed compared with the parser used in this experiment. Thus, the
current results support the practical usability of full parsers for IE systems.

Next, we evaluated the recall of extracting argument structures for first 97
out of the 179 sentences. These 97 sentences include 133 argument structures
(some sentences include more than one argument structures) to be extracted.
We ignored the differences in the structure inside ADJ in the argument struc-
tures, i.e., two argument structures are considered equevalent if the boundaries
of the strings that are the elements of ADJ values are equal. Among 133 ar-
gument structures, our system extracted (1) 31 (23%) argument structures
uniquely (modulo the substructure of ADJ), (2) 32 (24%) with ambiguity, and
could not extract (3) 70 (53%) as shown in Table 1. Figure 3 shows an example

bBecause of memory limit, currently we split sentences at some of subordinating
conjunction.

Pacific Symposium on Biocomputing 6:408-419 (2001)

”phorbol esters may induce posttranslational modifications of cellular transcription
factors that alter their DNA-binding characteristics”



REL : “induce”

ARGS :

[
SUBJ : “phorbol esters”
COMPS : “posttranslational modifications”

]

ADJ : “of cellular transcription factors
that alter their DNA-binding characteristics”







REL : “induce”

ARGS :


 SUBJ : “phorbol esters”

COMPS : “posttranslational modifications of cellular transcription factors
that alter their DNA-binding characteristics”







Figure 4: Example of ambiguous output

of input and output of the parser. The tags <PROTEIN 2>, <PROTEIN 3>,
and <PROTEIN 10> are generated by the preprocessor (or, in the current ex-
periment, human biologists) to replace the long names of proteins.

The 31 argument structures extracted uniquely were extracted from 28
sentences. The number of the parse results for these sentence are large: only
12 sentence had less than 10 parse trees. There were 3 sentences with about
10 parse trees, 8 sentence with about 100 trees, 3 sentence with about 10,000
trees, and 2 sentence had more than 1,000,000 parse trees. Still, the system
was able to extract the unique argument structures. This result claims that we
can ignore the ambiguity caused by phrases unrelevant to desired information,
such as modifiers, and can extract the information with much less ambiguity
without any disambiguation methods.

Among the ambiguous results ((2) in Table 1), the most problematic case
of ambiguity was that of PP attachment, i.e., whether an NP and a PP in
‘NP+PP’ construction should be separated to two slots or not. This problem
was found in 21 of the 32 ambiguous results.

PP attachment is a general problem that occurs in other domain as well.
Our group is investigating a domain-independent disambiguation method by
a stochastic model on feature structures, which can be integrated with our
system in the future. For example, Figure 4 shows an example of ambiguous
argument structures caused by a PP-attachment problem. In such cases, sim-
ple disambiguation methods, such as one by shortest/longest matching with
regular expressions, cannot correctly disambiguate them, but the disambigua-
tion requires information of individual words such as cooccurrence. In the

Pacific Symposium on Biocomputing 6:408-419 (2001)

Table 2: Cause of (3) failure of extraction

of arg. structures

failure of parsing 53
extractable from partial results 26
not extractable 27

failure for memory limit 7
other miss 10
total 70

example, we can expect to see the “modification”–“of”–“factor” relation more
often than the “induce”–“of”–“factor” relation, so the structure that includes
the “of”-phrase in the COMPS should be selected.

Table 2 shows the cause of parsing failure. Further investigations revealed
that most of the parsing failure was concerned with punctuations and coor-
dinations. This indicates that the sentences in this domain have much more
complicated coordination structure than those in newspaper articles for which
the grammar was originally constructed and that the grammar must be en-
hanced in this aspect.

We further investigate the possibility of the use of partial results by manual
investigation of the partial results of sentences for which no argument structure
was obtained because of the failure of parsing. Among 53 argument structures,
26 were extracted manually from partial results, as shown in Table 2. The argu-
ment structures obtained from partial results generally lacked the information
on modifiers in the ADJ slot, but the basic ACTOR–ACTEE relationship was
obtained. This tentative result suggests that even when the information from
an entire sentence cannot be extracted, an IE system can make use of the infor-
mation obtained from some local part of a sentence. These partial result can
be used as the equivalent of those information obtained by traditional pattern
matching methods that extract the information by looking at the phrases lo-
cally. Thus, with a processor that can handle the partial results of parsing, we
can expect an IE system that can make use of the global information from the
entire sentence when available and the partial information from the local infor-
mation from a part of the sentence when full parsing results are not available.
Note that the disambiguation module and the processor of partial results can
be constructed in domain independent way. Thus, the problem of ambiguity
and low coverage can be solved more systematically with a full parsing method
in contrast to one-by-one adding of surface string patterns.

Pacific Symposium on Biocomputing 6:408-419 (2001)

6 Conclusion and Future Works

We have designed and implemented an information extraction system using a
full parser to investigate the plausibility of full analysis of text using general-
purpose parser and grammar applied to biomedical domain. We partially
solved the problems of full parsing of inefficiency, ambiguity, and low cov-
erage by introducing the preprocessors. The preliminary experiment showed
that, among 133 argument structures to be extracted, 31 (23%) were extracted
uniquely, and 32 (24%) were extracted with ambiguity. With a disambigua-
tion module and the postprocessor that enables the system to use the partial
results, 99 (74%) argument structures in total are expected to be extracted.
From the result, we can conclude that the full parsing method is plausible in
application to IE system in this domain.

The design and implementation of postprocessors is the most important
aspect of our future work, along with the enhancement of a grammar. For
constructing a practical IE system, the user interface for defining the frame
structure and showing the result will also be an important issue.

References

1. Y. Ohta, Y. Yamamoto, T. Okazaki, and T. Takagi. Automatic construc-
tion of knowledge base from biological papers. In Proc. 5th International
Conference on Intelligent Systems for Molocular Biology, pages 218–225,
1997.

2. K. Fukuda, T. Tsunoda, A. Tamura, and T. Takagi. Towards information
extraction: Identifying protein names from biological papers. In Proc.
3rd Pacific Symoisium of Biocomputing, pages 707–718, 1998.

3. D. Proux, F. Rechenmann, L. Julliard, V. Pillet, and B. Jacq. Detecting
gene symbols and names in biological texts: A first step toward perti-
nent information extraction. In Genome Informatics 1998, pages 72–80.
Universal Academy Press, 1998.

4. N. Collier, C. Nobata, and J. Tsujii. Extracting the Names of Genes
and Gene Products with a Hidden Markov Model. In Proc. of COLING
2000, pages 201–207, 2000.

5. C. Nobata, N. Collier, and J. Tsujii. Automatic Term Identification and
Classification in Biology Texts. In Proc. NLPRS, 1999.

6. T. Sekimizu, H. S. Park, and J. Tsujii. Identifying the interaction
between genes and gene products based on frequently seen verbs in
MEDLINE abstracts. In Genome Informatics, pages 62–71. Univer-
sal Academy Press 1998, 1998.

Pacific Symposium on Biocomputing 6:408-419 (2001)

7. K. Humphreys, G. Demetriou, and R. Gaizauskas. Two applications
of information extraction to biological science journal articles: Enzyme
interactions and protein structures. In Proc. 5th Pacific Symoisium of
Biocomputing, pages 72–80, 2000.

8. J. Thomas, D. Milward, C. Ouzounis, S. Pulman, and M. Carroll. Au-
tomatic extraction of protein interactions from scientific abstracts. In
Proc. 5th Pacific Symposium on Biocomputing, pages 538–549, 2000.

9. T. C. Rindflesch, L. Tanabe, J. N. Weinstein, and L. Hunter. Edgar:
Extraction of drugs, genes and relations from the biomedical literature.
In Proc. 5th Pacific Symposium on Biocomputing, pages 514–525, 2000.

10. T. Ono, H. Hishigaki, A. Tanigami, and T. Takagi. Automatic extraction
of information on protein-protein interaction from scientific literature.
In Genome Informatics 1999, pages 296–297. Universal Academy Press,
1999.

11. J. Carroll and G. Minnen. Can Subcategorisation Probabilities Help a
Statistical Parser? In Proc. WVLC-6, pages 118–126, 1998.

12. Y. Tateisi, K. Torisawa, Y. Miyao, and Jun’ichi Tsujii. Translating the
XTAG english grammar to HPSG. In Proceedings of TAG+4 workshop,
1998.

13. A. Voutilainen. Designing a (finite-state) parsing grammar. In Em-
manuel Roche and Yves Schabes, editors, Finite-State Language Pro-
cessing. A Bradford Book, The MIT Press, 1996.

14. Y. Tateisi, T. Ohta, N. Collier, C. Nobata, and J.Tsujii. Building an
annotated corpus in the molecular biology domain. pages 28–34, 2000.

15. T. Makino, M. Yoshida, K. Torisawa, and J. Tsujii. LiLFeS — towards
a practical HPSG parser. In Proc. COLING–ACL,’98, pages 807–811,
1998.

16. K. Torisawa, K. Nishida, Y. Miyao, and J. Tsujii. An HPSG parser
with CFG filtering. to appear in journal of Natural Language Engineer-
ing Special Issue — Efficient Processing with HPSG: Methods, Systems,
Evaluation, 2000.

Pacific Symposium on Biocomputing 6:408-419 (2001)

