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Abstract. We give a characterization of pfaffian graphs in terms of even
orientations, extending the characterization of near bipartite non-pfaffian
graphs by Fischer and Little [4]. Our graph theoretical characterization is
equivalent to the one proved by Little in [6] (cf. [8]) using linear algebra
arguments.

1 Introduction

All graphs considered are finite and simple (without loops or multiple edges)
unless otherwise stated. Most of our terminology is standard and can be
found in many textbooks such as [2] and [9].

Let F be a 1-factor of a graph G. Then a cycle C is said to be F -alternating
if |E(C)| = 2|E(F )∩E(C)|. In particular, each F -alternating cycle has an

even number of edges. An F -alternating cycle C in an orientation ~G of G is
evenly (oddly) oriented if for either choice of direction of traversal around
C, the number of edges of C directed in the direction of traversal is even
(odd). Since C is even, this is clearly independent of the initial choice of
direction around C.

Let ~G be an orientation of G and F be a 1-factor of G. If every F -alternating
cycle is evenly oriented then ~G is said to be an even F -orientation of G.
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On the other hand if every F -alternating cycle is oddly oriented then ~G is
said to be an odd F -orientation of G.

An even subdivison of G is any graph G∗ which can be obtained from G
by replacing edges (u, v) of G by paths P (u, v) of odd length, such that
V (P (u, v)) ∩ V (G) = {u, v}.

An F -orientation ~G of a graph G is pfaffian if it is odd. It turns out that
if ~G is a pfaffian F -orientation then ~G is a pfaffian F̃ -orientation for all
1-factors F̃ of G (cf.[9, Theorem 8.3.2 (3)]). In this case we simply say that
G is pfaffian.

It is well known that every planar graph is pfaffian and that the smallest
non-pfaffian graph is the complete bipartite graph K3,3 (cf.[3]). The Pe-
tersen graph is a further example of a non-pfaffian graph (see [1, Section 3]
for details).

The literature on pfaffian graph is extensive and the results often profound
(see [16] for a complete survey). In particular, the problem of characteriz-
ing pfaffian bipartite graphs was posed by Pólya [14]. Little [7] obtained
the first such characterization in terms of a family of forbidden subgraphs.
Unfortunately, his characterization does not give rise to a polynomial al-
gorithm for determining whether a given bipartite graph is pfaffian, or for
calculating the permanent of its adjacency matrix when it is. Such a char-
acterization was subsequently obtained independently by McCuaig [11, 12],
and Robertson, Seymour and Thomas [15]. As a special case their result
gives a polynomial algorithm, and hence a good characterization, for de-
termining when a balanced bipartite graph G with adjacency matrix A is
det-extremal, i.e. it has |det(A)| = per(A). For a structural characteriza-
tion of det-extremal cubic bipartite graphs the reader may also refer to [17],
[10], [12] and [5]. In this context the pfaffian of the skew adjacency matrix
is defined and the sign of a 1-factor F (denoted by sgn(F )) is the sign of
the term corresponding to F in such a pfaffian (cfr. [9, Chapter 8]). In this
paper, the sign of a 1-factor of a graph will be used in the proof of Lemma
4.1.

The problem of characterizing pfaffian general graphs seems much harder.
Nevertheless, some very interesting connections in terms of bricks and near
bipartite graphs have been found (cf. e.g. [4], [9], [13], [16], [18]).

A graph G is said to be 1-extendable if each edge of G is contained in at
least one 1-factor of G. A subgraph J of a graph G is central if G− V (J)
has a 1-factor.
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A 1-extendable non-bipartite graph G is said to be near bipartite if there
exist edges e1 and e2 such that G\{e1, e2} is 1-extendable and bipartite.

The pfaffian property which holds for odd F -orientations does not hold
for even F -orientations. Indeed, the Wagner graph W (cf. Section 2) is
pfaffian, so there is an odd orientation which works for all 1-factors. On
the other hand, it has an even F1-orientation and no even F2-orientation
where F1 and F2 are chosen 1-factors of W (cf. Lemma 2.4).

A graph G is said to be simply reducible to a graph H0 if G has an odd
length cycle C such that H0 can be obtained from G by contracting C, i.e.
by removing an edge from the graph while simultaneously merging the two
vertices that it previously joined and disregarding loops or multiple edges.
More generally G is said to be reducible to a graph H if for some fixed
integer k there exist graphs G0, G1, . . . , Gk such that G0 = G, Gk = H and
for i, 1 ≤ i ≤ k, Gi−1 is simply reducible to Gi.

Fischer and Little [4] proved the following characterization of near bipartite
non-pfaffian graphs:

Theorem 1.1 (Fischer and Little [4]). A near bipartite graph G is non-
pfaffian if and only if G contains a central subgraph J which is reducible to
an even subdivision of K3,3, the cubeplex Γ1 or the twinplex Γ2 (cf. Fig. 1
in Section 3)

In [13] this result was restated in terms of matching minors.

In this context, recently we have examined the structure of 1-extendable
graphs G which have no even F -orientation [1], where F is a fixed 1-factor
of G. We have given in [1] a characterization in the case of graphs of
connectivity at least four and of k-regular graphs, k ≥ 3. Part of this
characterization is stated in Theorem 2.6.

In this note, as a consequence of the cited characterization of graphs with
no even F -orientations, we characterize non-pfaffian graphs in terms of
even orientations (cf. Theorem 4.3), extending the characterization of near
bipartite non-pfaffian graphs by Fischer and Little [4] cited in Theorem 1.1.

Note that Theorem 4.3 gives a graph theoretical proof of an equivalent
formulation that is stated in Little and Rendl [8] and proved using linear
algebra arguments in [6].
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2 Preliminaries

In this section we introduce some definitions and notation useful to state
and then prove our main Theorem 4.3.

Definition 2.1. (Zero-sum sets) Let G be a graph with a 1-factor F . Sup-
pose that A := {C1, . . . , Ck} is a set of F -alternating cycles such that each
edge of G is contained in an even number of elements of A. Then A is said
to be a zero-sum F -set.

If k is even or odd we say that the zero-sum F -set is respectively an even
F -set or an odd F -set.

The following Lemma will be particularly useful in the proof of Corollary
2.3, Proposition 4.2 and the main Theorem 4.3.

Lemma 2.2. Let G be a graph with a 1-factor F and an odd zero-sum
F -set C:= {C1, . . . , Ck}. Suppose that C1, . . . , Ck1

are oddly F -oriented

and Ck1+1, . . . , Ck are evenly F -oriented in an orientation ~G of G. Let
k2 := k− k1. Then, if k1 is odd or k2 is odd, G cannot have respectively an
even F -orientation or an odd F -orientation.

Proof. Firstly suppose that k1 is odd and that G has an even F -orientation.
Then there exists a set S of edges such that |E(Ci) ∩ S| ≡ 1 (mod 2),
i = 1, . . . , k1 and |E(Cj) ∩ S| ≡ 0 (mod 2), j = k1 + 1, . . . , k. This follows

since to change ~G into an even F -orientation we must reverse an odd num-
ber of orientations in the oddly oriented F -cycles and an even number of
orientations in the evenly oriented F -cycles. Set S := {e1, . . . , el} and write

ai,j :=

{
1 if ei ∈ E(Cj) (j = 1, . . . , k)
0 otherwise

Then, since C is a zero-sum F -set

k∑

j=1

ai,j ≡ 0 (mod 2) , i = 1, . . . , l (1)

and, from the definition of S,

l∑

i=1

ai,j i ≡ 1 (mod 2) , j = 1, . . . , k1 (2)

l∑

i=1

ai,j ≡ 0 (mod 2) , j = k1 + 1, . . . , k (3)
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Since k is odd, (1), (2) and (3) give a contradiction. Note that the same
contradiction holds if k2 = 0. Hence, if k1 is odd G cannot have an even
F -orientation. Similarly, (reversing the roles of (2) and (3)) if k2 is odd
then G cannot have an odd F -orientation.

Corollary 2.3. Let G be a graph with a 1-factor F and an odd F -set. Then
G cannot have both an odd F -orientation and an even F -orientation.

Proof. In the notation of Lemma 2.2, since k is odd either k1 is odd or k2
is odd. Then the result follows directly from Lemma 2.2.

The Wagner graphW is the cubic graph having vertex set V (W ) = {1, . . . , 8}
and edge setE(W ) consisting of the edges of the cycleC = (1, . . . , 8) and the
chords {(1, 5), (2, 6), (3, 7), (4, 8)}.

Let C1 and C2 be cycles of G such that both include the pair of distinct in-
dependent edges e = (u1, u2) and f = (v1, v2). We say that e and f are skew
relative to C1 and C2 if the sequence (u1, u2, v1, v2) occurs as a subsequence
in exactly one of these cycles. Equivalently, we may write, without loss of
generality, C1 := (u1, u2, . . . , v1, v2, . . .) and C2 := (u1, u2, . . . , v2, v1, . . .)
i.e. if the cycles C1 and C2 are regarded as directed cycles, the orientation
of the pair of edges e and f occur differently.

Lemma 2.4. [1] Let F1 := {(1, 5), (2, 6), (3, 7), (4, 8)} and F2 := {(1, 2),
(3, 4), (5, 6), (7, 8)} be 1-factors of the Wagner graph W . Set e := (1, 8)
and f := (4, 5). Then the Wagner graph W satisfies the following:

(i) W is 1-extendable

(ii) W − {e, f} is bipartite and 1-extendable (i.e. W is near bipartite).

(iii) W has an even F1-orientation and an odd F1-orientation.

(iv) W is pfaffian.

(v) W has no even F2-orientation.

(vi) There exist no pair of F1-alternating cycles relative to which e and f
are skew.

(vii) The edges e and f are skew relative to the F2-alternating cycles C1 =
(1, . . . , 8) and C2 = (1, 2, 6, 5, 4, 3, 7, 8).
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Definition 2.5. (Generalized Wagner graphs W) A graph G is said to be
a generalized Wagner graph if

(i) G is 1-extendable;

(ii) G has a subset R := {e, f} of edges such that G − R is 1-extendable
and bipartite (i.e. G is near bipartite);

(iii) G− R has a 1-factor F and F -alternating cycles C1 and C2 relative
to which e and f are skew.

The set of such graphs is denoted by W, and a 1-factor F of G satisfying
(iii) is said to be a W -factor of G.

Note that, if we say that G ∈ W, we will assume the notation of Definition
2.5, i.e. that F is a W-factor of G and R, C1 and C2 are as described in
Definition 2.5(ii) and (iii), respectively.

Recently the authors proved in [1] the following result:

Theorem 2.6 (Abreu et al. [1]). Let G be a 1-extendable graph containing
a 1-factor F such that G has no even F -orientation. Then G contains an
F -central subgraph G0 such that G0 ∈ W and F ∗ is a W-factor of G0.

Note that in a companion paper [1], we complete this characterization in
the case of regular graphs, graphs of connectivity at least four and of k-
regular graphs for k ≥ 3. Moreover, note that if G0 ∈ W then G0 is near
bipartite. Furthermore F ∗ is the 1-factor of G0 induced by F in the obvious
way.

3 Bad graphs

In this section we introduce the definition of bad graphs and we study their
relation with even and odd F -orientations. The results contained in this
section will be fundamental in proving our main Theorem 4.3

Definition 3.1. (Bad Graph) A graph G is said to be bad if G contains a
1-factor F such that:

(i) G has a zero-sum F -set A;

(ii) G has an orientation in which exactly an odd number of elements
of A are evenly F -oriented (the other elements of A being oddly F -
oriented).
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This definition is equivalent to the one of intractable set of alternating
circuits given by Little and Rendl in [8]. We will prove, in Theorem 4.3
that a graph is bad if and only if it is non-pfaffian, which corresponds to
the equivalent result proved by Little in [6], using linear algebra arguments.

Definition 3.2. (Simply Bad Graph) Let G be a graph. G is said to be
simply bad if G contains a 1-factor F such that:

(i) G has an odd F -set A;

(ii) G has an F -orientation in which each element of A is evenly F -
oriented.

Remark 3.3. By definition, a simply bad graph is also bad. Definitions of
bad and simply bad are, in fact, equivalent (this follows from Proposition
4.2 and Theorem 4.3).

The next two lemmas will be used in the proof of Proposition 4.2.

Lemma 3.4. The graphs cubeplex Γ1, twinplex Γ2 and K3,3 are simply bad.

Figure 1: The graphs Γ1, Γ2 and their orientations

Proof. (i) Γ1 is simply bad:

Let F1 := {(a, d), (b, g), (i, c), (j, e), (h, k), (f, l)}. Let A be the set of
F1-alternating cycles defined by:

C1:=(a, d, c, i, j, e, f, l, k, h, g, b, a) C2:=(a, d, e, j, k, h, i, c, b, g, f, l, a)
C3:=(b, g, f, l, k, h, i, c, b) C4:=(a, d, c, i, j, e, f, l, a)
C5:=(a, d, e, j, k, h, g, b, a)
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Thus, A is an odd F1-set in which each element of A is evenly F1-
oriented. Hence, Γ1 is simply bad.

(ii) Γ2 is simply bad:

Note that Γ2 may be obtained from the Petersen graph by subdividing
two fixed edges at a maximum distance apart and then joining the
vertices of degree 2 by an edge. Let

F2 := {(a, b), (c, d), (e, f), (g, h), (i, j), (k, l)}.

Let A be the set of F2-alternating cycles defined by:

C1 := (a, b, f, e, l, k, g, h, d, c, j, i, a) C2 := (h, g, f, e, l, k, j, i, h)
C3 := (a, b, f, e, d, c, j, i, a) C4 := (a, b, c, d, h, g, k, l, a)
C5 := (a, b, c, d, e, f, g, h, i, j, k, l, a)

Thus, A is an odd F2-set in which each element of A is evenly F2-
oriented. Hence, Γ2 is simply bad.

(iii) K3,3 is simply bad:

Finally, it is easily shown that K3,3 is simply bad (see Figure 2).

Figure 2: Orientation of the graph K3,3

Using the notation of (i) and (ii), set F3 := {(1, 4), (2, 5), (3, 6)} and
A := {Ci|i = 1, 2, . . . , 5} where

C1 := (1, 4, 2, 5, 3, 6, 1) C2 := (1, 4, 3, 6, 2, 5, 1)
C3 := (1, 4, 2, 5, 1) C4 := (1, 4, 3, 6, 1)
C5 := (2, 5, 3, 6, 2)

The proof follows immediately.
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In the following lemmas we examine the relations between even subdivision,
reducibility and simply bad graphs.

Lemma 3.5. An even subdivision H of a simply bad graph G is also simply
bad.

Proof. Let F be a 1-factor of G, let A be an odd F -set and
−→
G an orientation

of G in which all elements of A are evenly oriented. Let F ∗ be the 1-factor
of H naturally induced by F , in which from each path Pe in H which
replaced an edge e ∈ E(G), alternating edges are chosen into F ∗ according
to e belonging to F or not. Similarly, A induces a set of cycles A∗ in H, in
which each edge of a cycle of A which had been replaced by a path in H,
is replaced by that same path in the corresponding cycle in A∗. Finally,−→
G induces an orientation

−→
G∗ in H in which every path Pe of H which

replaced an edge e from G, has all edges oriented in correspondence to the

orientation of e ∈ E(
−→
G). Since H is an even subdivision, by definition A∗

turns out to be an odd F ∗-set and
−→
G∗ turns out to be an orientation in

which every cycle of A∗ is evenly F ∗-oriented, so H is simply bad.

Definition 3.6. Let ~G be an orientation of G. We define a (0, 1)-function
ω := ω~G on the set of paths and cycles of G as follows:

(i) For any path P := P (u, v) = (u0, . . . , un)

ω(P ) := |{i : [ui, ui+1] ∈ E(~G), 0 ≤ i ≤ n− 1}| (mod 2) .

Note that ω(P (u, v)) ≡ ω(P (v, u)) + n (mod 2).

(ii) For any cycle C = (u1, . . . , un, u1)

ω(C) := |{i : [ui, ui+1] ∈ E(~G), 0 ≤ i ≤ n− 1}| (mod 2) ;

where the suffixes are integers taken modulo n.

We say that ω is the orientation function associated with ~G.

The following lemmas will be necessary in the proof of Proposition 4.2.

Lemma 3.7. Suppose that G is a graph which is simply reducible to a graph
H. Then if H is simply bad, G is simply bad.
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Proof. Suppose that H is obtained from G by contracting the cycle D to a
vertex u, where for some integer k (k ≥ 1) D := (u1, u2, . . . , u2k+1).

Suppose that H is simply bad. Let F be a 1-factor of H such that H

contains an odd F -set A and H has an F -orientation
−→
H in which each

element of A is evenly oriented. Let ω be the associated orientation func-
tion. Suppose that ei := (u, vi), i = 1, 2, . . . , 2k + 1 are a subset of the
edges incident to u such that e∗i := (ui, vi) are edges in G (we will assume
that such edges exist and this makes no difference to the argument). We
may assume that e1 ∈ F . Set F1 := {(u2i, u2i+1)| i = 1, 2, . . . , k)} and
F2 := F1 ∪ {F \ {e1} ∪ {e∗1}}. Thus, F2 is a 1-factor of G. Now define an

F2-orientation
−→
G of G with orientation function ω2, as follows:

(i) ω2(a, b) := ω(a, b) for each (a, b) ∈ E(H \ {u});
(ii) ω2(ui, vi) := ω(u, vi) for i = 1, 2, . . . , 2k + 1;

(iii) ω2(ui, ui+1) := 1 for i = 1, 2, . . . , 2k+1 (indices taken modulo 2k+1).

Let Cj be a typical F -alternating cycle of H containing e1 and ej . Then
there is a natural one to one correspondence with F2-alternating cycles C∗

j

in G. Thus set C∗
2i to be the F2-alternating cycle in G obtained from

C2i on replacing the path (v1, u, v2i) by (v1, u1, u2k+1, u2k, . . . , u2i, v2i).
Similarly set C∗

2i+1 to be the F2-alternating cycle obtained from C2i+1

by replacing (v1, u, v2i+1) by (v1, u1, u2, . . . , u2i+1, v2i+1). By definition
w(C∗

j ) = w(Cj) = 0.

Let A∗ be the set of F2-alternating cycles which is obtained form A by
replacing each Cj by C∗

j . Thus each element of A∗ is evenly F2-oriented in
−→
G . Furthermore, consider the modulo 2 sums of the cycles in A∗. Thus this
is an Eulerian graph contained in D (since A is an odd F -set) and hence
is a union of even cycles contained in D. Hence since D is an odd length
cycle, this Eulerian graph is empty and A∗ is and odd F2-set. Hence, G is
simply bad.

Lemma 3.8. If G contains a simply bad central subgraph J , then G is
simply bad.

Proof. Let J be as in the statement. Since J is simply bad, J has a 1-
factor F such that J contains and odd F -set A and J has an F -orientation
in which each element of A is evenly oriented. Now set F2 := F ∪F1 where
F1 is a 1-factor of G− V (J). Thus G contains A and A is and odd F2-set
and in G, A has the induced F2-orientation in which each element of A is
evenly F2-oriented.
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Lemma 3.9. If G is reducible to H and H is simply bad then G is simply
bad.

Proof. It is an immediate consequence of Lemmas 3.7 and 3.8.

4 Equivalence between bad and non-pfaffian
graphs

In this section we prove our main characterization Theorem 4.3. Firstly
we need the following lemma which relates pfaffian graphs to even F -
orientations, and an accessory characterization of non-pfaffian graphs in
terms of simply bad graphs (c.f. Proposition 4.2).

Lemma 4.1. Let G be a non-pfaffian graph containing a 1-factor F . Sup-
pose that G has an even F -orientation. Then G is simply bad.

Proof. We use the proofs of Lemma 8.3.1 and Theorem 8.3.8 contained in
[9].

Let G be a non-pfaffian graph with a 1-factor F such that G has an even

F -orientation
−→
G .

By Theorem 8.3.7(4) in [9] there is a set of 1-factors F1, F2, . . . , Fr (r > 0)
of G such that

r∑

j=1

Fj ≡ 0 (mod 2) (4)

(i.e. each edge belongs to an even number of these 1-factors)

and

r∑

j=1

`(Fj) ≡ 1 (mod 2), (5)

where for each Fj , `(Fj) satisfies sgn(Fj) = (−1)`(Fj) and `(Fj) ∈ {0, 1}.
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Let A be the family of all F -alternating cycles formed from F∆Fj for
j = 1, 2, . . . , r (where ∆ stands for the symmetric difference). Also let kj
denote the number of F -alternating cycles formed from F∆Fj . We may
assume that the vertices of G are labelled so that sgn(F ) = 1. Hence, as
in Lemma 8.3.1.:

sgn(F )sgn(Fj) = sgn(Fj) = (−1)kj (6)

and thus, as in the proof of Lemma 8.3.8, `(Fj)≡ kj (mod 2). Hence, from (5),

|A| =
r∑

j=1

kj =

r∑

j=1

`(Fj) ≡ 1 (mod 2). (7)

Furthermore consider the sum of the cycles in A modulo 2. If e /∈ F then,
from (4), e is contained in an even number of Fj (j = 1, 2, . . . , r). Thus the
modulo 2 sum of the cycles in A is a subset of F . But since the modulo
2 sum of cycles must be an Eulerian graph, it follows that the modulo 2
sum of cycles in A is zero. Hence A is a simply bad F -set and G is simply
bad.

We give a characterization of non-pfaffian graphs in terms of simply bad
graphs and then use it to prove our main result which characterizes non-
pfaffian graphs in terms of bad graphs.

Proposition 4.2. Let G be a graph. Then G is simply bad if and only if
it is non-pfaffian.

Proof. Let G be a simply bad graph. From the definition of simply bad
graph, it follows that k2 = k in Lemma 2.2, and k is odd so G has no odd
F -orientation. Hence G is non-pfaffian.

Now suppose that G is non-pfaffian. There are two cases to consider: (i)
G has an even F -orientation where F is a 1-factor of G; (ii) G has no even
F -orientation, for all 1-factors F .

Case (i). Let G be a graph with an even F -orientation where F is a 1-factor
of G. Then, G is simply bad by Lemma 4.1.
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Case (ii). Suppose that for all 1-factors F , G has no even F -orientation.
Then, from Theorem 2.6 and subsequent note, for each 1-factor F , the
graph G contains an F -central subgraph G0 which is near bipartite and
non-pfaffian. Hence, from Theorem 1.1, G0 contains a central subgraph J
which is reducible to an even subdivision of K3,3, Γ1 or Γ2.

By Lemma 3.4, K3,3, Γ1 and Γ2 are simply bad, and so is any even subdivi-
sion by Lemma 3.5. Thus, applying Lemma 3.9, the subgraph J is simply
bad. Hence, applying Lemma 3.8 twice, both G0 and G are simply bad.

Theorem 4.3. Let G be a graph. Then G is bad if and only if it is non-
pfaffian.

Proof. Let G be a bad graph. From the definition of bad graph, it follows
that k2 = k in Lemma 2.2, and k is odd so G has no odd F -orientation.
Hence G is non-pfaffian.

Let G be a non-pfaffian graph. By Proposition 4.2, G is simply bad and by
Remark 3.3, G is bad.

As mentioned earlier, this result was equivalently stated in Little and Rendl
[8] and proved using linear algebra arguments in [6]. Here, we have given
a graph theoretical proof and extended Fischer and Little’s result [4] on
near-bipartite graphs in terms of bad graphs.
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